An Overview of the NSF-ITR-Census
Bureau Synthetic Data Project



Acknowledgements and Disclaimer

 This work was partially supported by the National
Science Foundation (grants SES-0339191, SES-
0427889 and CNS-0627680) and the United States
Census Bureau.

o All statistical materials in this presentation have been
reviewed for disclosure avoidance.

 The opinions are those of the author and not the
National Science Foundation nor the Census Bureau.



Outline

Foundations of the NSF-ITR-Census Bureau
project

Criteria for “good” synthetic data

Core projects

The Cornell Virtual Research Data Center



The Research — Synthetic Data
Feedback Cycle




Definition of Synthetic Data

X = confidential data
Dr[i\x]z PPD of X given X

Release data are samples of X

e Synthetic data are created by estimating the posterior
predictive distribution (PPD) of the release data given
the confidential data; then sampling release data from
the PPD conditioning on the actual confidential values.

e The PPD is a parameter-free forecasting model for new
values of the complete data matrix that conditions on
all values of the underlying confidential data.



Connection to Randomized Sanitizers

X = confidential data
U =random noise

san(X,U):(X,U)— X
Pr[)?\x]z probability of X given X

e A randomized sanitizer creates a conditional

probability distribution for the release data given
the confidential data.

e The randomness in a sanitizer is induced by the
properties of the distribution of U.

e The PPD is just a particular randomized sanitizer.



Disclosure Limitation Definitions

X =xWand X = x@

~

X = X, realization of the synthesizer

e Consider two confidential data matrices that
differ in only a single row, X&) and x(2).

e Use the PPD to evaluate the probability of a
particular release data set given the two
different confidential data sets.



Synthetic Data Can Leak Information
about a Single Entity

PrX = %|X = xM] # Pr[X = #|X = x?]

e Changing a single row of the confidential data
matrix changes the PPD or the random sanitizer.

e The PPD or the random sanitizer define the
transition probabilities from the confidential data to

the release data.
* True for all SDL procedures that infuse noise.



Connection Between Synthetic Data
and Differential Privacy

Pr :X = 5D
Pr :X = x(2)

X = x(l)_
X = x(z):
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The posterior odds ratio for the gain in information about a
single row of X is equal to the differential privacy from the
randomized sanitizer that creates release data by sampling
from the specified conditional distribution.



Connection Between Differential
Privacy and Inferential Disclosure

Pr :X = 5D
Pr :X = x(2)

X = x(l)_
X = x(z):
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The posterior odds ratio for the gain in information about a
single row of X is the Dalenius (1977) definition of an
inferential disclosure. Bounding the differential privacy
therefore bounds the inferential disclosure.



Goals of Synthetic Data

* Analytical validity

— Statistical inferences based on the synthetic data
should be “similar” to those based on the
underlying confidential data.

e Confidentiality protection

— The perturbation of the confidential data induced
by replacing some, or all, of the values with draws
from the PPD should be adequate to “protect” the
confidential data.



Formal Models of Analytical Validity

 Unconditional analytical validity

— The synthetic data process delivers the same
inferences as the process that generated the
confidential data. This property depends on both the
synthesizer and the design of the confidential data

e Conditional analytical validity
— The synthetic data process delivers the same
inferences as the realized confidential data

e The Rubin (1993) inference validity was based on
using multiple samples (implicates) from the PPD.
It is an unconditional analytical validity model.



Project 1: Survey of Income and
Program Participation Synthetic Beta

e Based on 1990-1993 and 1996 SIPP panels

e Linked to complete earnings and benefit
histories from SSA (1950 to 2003)

e 16-implicate partially synthetic file with 633
variables released as Beta in November 2007

* Any beta user can have the analysis performed
on the underlying confidential data by
following the procedure outlined by the
Census Bureau
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Disclosure Avoidance Review

= D O n e by p ro b a b I | I St I C Decile of Distance Distr. True Matches False Matches % True
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d |Sta nce'baSEd 6 231 26148 0.8760/2
7 243 26137  0.921%

8

1 1 267 26112  1.012%
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Project 2: Synthetic Longitudinal
Business Database

Census Bureau establishment universe from 1976
to 2001

Partially synthetic microdata file released in beta
for a single industry (SIC 573) in May 2007

Complete partially synthetic microdata file
currently undergoing disclosure avoidance review

Beta users of the synthetic LBD will be able to
have their analyses run on the confidential LBD,
as in the SIPP example
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Pearson Correlation Coefficients

SIC 573
Year. 2000
Synthetic Synthetic
Employment Employment Payroll  Payroll
Employment 1
41000
Synthetic 0.003 1
Employment 21100 41000
Payroll 0.712 -0.012 1
41000 21100 41000
Synthetic 0.007 0.444  0.004 1

Payroll 21100 41000 21100 41000



Application to Synthetic LBD

e (Categorize each of employment and payroll so that
— 100 represents observation in 0-90t" percentiles
— 010 represents obs in 90-99% percentiles
— 001 represents obs in 99+ percentiles

e Construct transition matrix so that

— 100100 represents point in 0-90 %ile of both employment and payroll

— 100010 represents point in 0-90th %ile of employment and 90-99th %ile
of payroll

— Etc.

Synthetic

Actual 100100] 100010f 100001 010100 010010 010001 001100 001010 001001
100100 0.8000f 0.0250fF 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250
100010 0.0250f 0.8000f 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250
100001 0.0250f 0.0250f 0.8000 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250
010100 0.0250f 0.0250F 0.0250 0.8000 0.0250 0.0250 0.0250 0.0250 0.0250
010010 0.0250f 0.0250f 0.0250 0.0250 0.8000 0.0250 0.0250 0.0250 0.0250
010001 0.0250] 0.0250fF 0.0250 0.0250 0.0250 0.8000 0.0250 0.0250 0.0250
001100 0.0250] 0.0250fF 0.0250 0.0250 0.0250 0.0250 0.8000 0.0250 0.0250
001010 0.0250fF 0.0250] 0.0250 0.0250 0.0250 0.0250 0.0250 0.8000 0.0250
001001 0.0250] 0.0250fF 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.8000




Application Synthetic LBD

e When one obs on one variable changes, it could
affect the frequencies in any of the cells of the
synthetic data.

 For each of the cells in the synthetic data
(columns), calculate the relative probability that
two observed data sets could have generated
slightly different synthetic data sets.

e Compare only all possible “neighboring” cells in
the observed data that could be the source of the
difference. These cells differ only by employment
or payroll (not both)



Example (Artificial Data)

e Transition matrix (artificial data)

— Rows represent actual (confidential) data, columns
represent synthetic (released) data

— Rows are the conditional probability of releasing the
column value, given the row value

— The example has been simplified to illustrate the
method

Synthetic

Actual 100100 100010 100001 010100 010010 010001 001100 001010 001001
100100 0.8000 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250
100010 0.0250 0.8000 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250
100001 0.0250 0.0250 0.8000 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250
010100 0.0250 0.0250 0.0250 0.8000 0.0250 0.0250 0.0250 0.0250 0.0250
010010 0.0250 0.0250 0.0250 0.0250 0.8000 0.0250 0.0250 0.0250 0.0250
010001 0.0250 0.0250 0.0250 0.0250 0.0250 0.8000 0.0250 0.0250 0.0250
001100 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.8000 0.0250 0.0250
001010 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.8000 0.0250
001001 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.8000




Example, Part Il

e Differential Privacy Calculation
— Consider the column 100010

— Entry highlighted in yellow is the maximum numerator (row
value 100010)

— Entries highlighted in green have row values that differ from the

row value for only a single variable (employment or payroll, not
both)

Synthetic

Actual 100100] 100010f 100001 010100 010010 010001 001100 001010 001001
100100 0.8000f 0.0250f 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250
100010 0.0250f 0.8000f 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250
100001 0.0250f 0.0250f 0.8000 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250
010100 0.0250f 0.0250f 0.0250 0.8000 0.0250 0.0250 0.0250 0.0250 0.0250
010010 0.0250f 0.0250f 0.0250 0.0250 0.8000 0.0250 0.0250 0.0250 0.0250
010001 0.0250] 0.0250fF 0.0250 0.0250 0.0250 0.8000 0.0250 0.0250 0.0250
001100 0.0250] 0.0250fF 0.0250 0.0250 0.0250 0.0250 0.8000 0.0250 0.0250
001010 0.0250fF 0.0250fF 0.0250 0.0250 0.0250 0.0250 0.0250 0.8000 0.0250
001001 0.0250] 0.0250fF 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.8000




Example, Part Il

o Differential Privacy Calculation

Repeat the calculation for every column of the transition matrix

In each column, the yellow entry is the maximum numerator and
the green entries are the relevant rows for comparison

Differential privacy for this synthesizer is 3.4657

The inferential disclosure odds ratio has been bounded at 32

Actual

100100
100010
100001
010100
010010
010001
001100
001010
001001

Synthetic
100100 100010 100001 010100 010010 010001 001100 001010 001001
0.8000 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250
0.0250 0.8000 0.0250 0.0250  0.0250 0.0250 0.0250  0.0250 0.0250
0.0250 0.0250 0.8000 0.0250 0.0250 0.0250 0.0250 0.0250  0.0250
0.0250 0.0250 0.0250 0.8000 0.0250 0.0250 0.0250 0.0250 0.0250
0.0250 0.0250 0.0250 0.0250 0.8000 0.0250 0.0250 0.0250 0.0250
0.0250 0.0250° 0.0250 0.0250 0.0250 0.8000 0.0250 0.0250 0.0250
0.0250 0.0250 0.0250  0.0250 0.0250 0.0250 0.8000 0.0250 0.0250
0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.8000  0.0250
0.0250 0.0250° 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.8000




Project 3: Synthetic Longitudinal
Employer-Household Dynamics Data

* You saw the presentation yesterday by Simon

* Longitudinally integrated relational database
of individuals, employers, jobs

 Complete realized mobility graph (who ever
worked for whom) not synthesized.



Related Projects: OnTheMap

e Residential location-workplace location
mapping application developed from the
Census Bureau’s Longitudinal Employer-
Household Dynamics infrastructure file system

* Block-level data for 2002 through 2006

e Complete origin-destination matrix stratified
by age group, income group, and industry
protected by synthetic data methods
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Analytical Validity v. Confidentiality Protection in on the Map
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Taking Account of Formal Privacy
Models

e [tis now known from a variety of papers in the
cryptographic data privacy literature (Dwork, Nissim
and their many collaborators, Gehrke and his
collaborators, and others) that the confidentiality
protection afforded by synthetic data depends upon
properties of the transition probabilities that relate the
confidential data to the release data.

* Not surprising since
Pr[X|X] =1

implies that the PPD leaves the confidential data
unchanged by the synthesizer.



The Virtual Research Data Center

e Web-based application that allows complete
access to all synthetic data products
developed by the NSF-ITR collaborators with
the Census Bureau

e Full access from anywhere

e Simulates the Census RDC operation to
facilitate developing models on synthetic data
that can be estimated on the underlying
confidential data
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Contacts

e John.Abowd@cornell.edu
e virtualrdc@cornell.edu

Thank you
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