

Disclosure control in research environments

Felix Ritchie

Outline

- Context
- Research environments
- Use of rules
- SDC for unpredictable research
 - Principle-example teaching
 - Modelling outputs
 - Practicalities
- Example: Business Data Linking

Context

Increasing pressure for release of microdata

 increased ability to analyse large amounts of data
 developments in lab technology

Concern about release standards

- regular SDC rules inappropriate for research
- consistency on- and off-site
- wider range of analyses
- cross-border sharing

need for clarity

Research environments

- Full access to microdata
- Expert users
- Wide and unpredictable range of outputs
- SDC carried out on outputs, not data
- Assume no deliberate attempt to remove data

Use of rules

• Consider a simple table rule

a table for release must have a frequency of at least filles total and the second inglight total ball numbers of the second inglight total the second inglight total doeses at Utogeth for a fillential total total total total information lity this tonist energy with the second ing publice a gate for public sources

What about identification?

SDC in the research zoo

- SDC for anonymised data/aggregates developed for a finite set of outcomes
- SDC in a research environment needs to allow for an infinite set of outcomes
- Building a cage vs building a zoo

SDC for unpredictable research

Understanding of principles

Soft rules

• Table cells will normally be considered non-confidential if the frequency of units is at least five; lower frequencies can be released if it can be demonstrated that the confidentiality principles (see...) would not be broken; higher frequencies may be required if there is insufficient variation in the data or the data can be identified with a small number of statistical units

Modelling outputs

 A linear regression is non-disclosive if one or more coefficients is effectively suppressed

Education

SDC teaching example

• Example: individual data

SDC teaching example

Transformed individual data (deviation from sample mean)

Age Deviation vs Wage Deviation

What if this graph shows nurses and hospital consultants?

What if nurses only earn £4-£8 per hour?

 Transformed individual data (devi group mean; sub-group means ar observations)

What if the minimum age for consultants is 40 – and they start retiring at 60?

Age Deviation vs Wage Deviation

Age Deviation from Mean of Occupational Group

Practicalities

 4 principles put emphasis on researchers to demonstrate safety of outputs

Potential problems

- SDC staff motivation
- SDC staff skills
- Need for a positive relationship

- Is this scalable?

Example: the UK Virtual Microdata Lab

- Compulsory/advisory training session
 Over 300 trained researchers since 2004
- Rules developed in association with researchers
- All outputs manually reviewed
 - Target review time 5 working days
 - Practical response time 1 working day
- Quantity is main reason for rejection
 - roughly 1 output/month rejected for confidentiality reasons

Example, continued

- Problems:
 - volume of output
 - scalability
 - no SDC paper for circulation yet
- Not problems
 skill levels

transparency and consistency through

 common training programme
 recording of novel decisions

Summary

 Transparency, consistency, flexibility increasingly a concern

• Solutions:

- Agreed principles
- Transparency in decision-making
- Model-based reasoning, not data-based
- Education
- Relationship with researchers

Felix Ritchie felix.ritchie@ons.gov.uk

The Virtual Microdata Laboratory vml@ons.gov.uk