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Abstract  

Matching-type estimators using the propensity score are the major workhorse in active labour 
market policy evaluation. This work investigates if machine learning algorithms for estimating the 
propensity score lead to more credible estimation of average treatment effects on the treated 
using a radius matching framework. Considering two popular methods, the results are ambiguous: 
We find that using LASSO based logit models to estimate the propensity score delivers more 
credible results than conventional methods in small and medium sized high dimensional datasets. 
However, the usage of Random Forests to estimate the propensity score may lead to a 
deterioration of the performance in situations with a low treatment share. The application reveals 
a positive effect of the training programme on days in employment for long-term unemployed. 
While the choice of the “first stage” is highly relevant for settings with low number of observations 
and few treated, machine learning and conventional estimation becomes more similar in larger 
samples and higher treatment shares.  

Zusammenfassung  

Propensity Score Matching-Schätzer sind ein zentrales Tool, um Wirkungen aktiver 
Arbeitsmarktpolitik mit Individualdaten zu analysieren. Diese Studie untersucht, inwieweit 
Machine-Learning Algorithmen zur Schätzung des Propensity Score zu einer verbesserten 
Schätzung von durchschnittlichen Maßnahmeteilnahmeeffekten für die Teilnehmenden führt, 
wenn Radius-Matching verwendet wird. Es werden zwei gängige Methoden verwendet und die 
Analyse kommt zu keinem eindeutigen Ergebnis: Die Anwendung des LASSO auf der Basis von 
Logit-Modellen zur Schätzung des Propensity Score liefert überzeugendere Befunde als 
konventionelle Schätzmethoden, wenn kleine oder mittelgroße Datensätze verwendet werden. 
Wenn hingegen Random Forests zur Schätzung des Propensity Score verwendet werden, kann 
unter Verwendung von Stichproben mit einem geringen Anteil von Teilnehmenden das Gegenteil 
der Fall sein. Den Schätzergebnisse zufolge, führen die untersuchten Schulungsmaßnahmen dazu, 
dass die Tage in Beschäftigung nach Förderbeginn für die langzeitarbeitslosen 
Schulungsteilnehmenden höher ausfallen als ohne diese Förderung. Während bei Stichproben mit 
einer geringen Anzahl von Beobachtungen und einem kleinen Anteil von 
Maßnahmeteilnehmenden die Wahl des Schätzers für den Propensity Score für die Ergebnisse 
hoch relevant ist, sind die Resultate von Machine-Learning- und konventionellen Schätzungen bei 
einer hohen Anzahl von Beobachtungen und einem relativen hohen Anteil von 
Maßnahmeteilnehmenden ähnlicher. 

JEL classification  

J68, C21   



 
IAB-Discussion Paper 5|2020 6 

Keywords  

Programme evaluation, active labour market policy, causal machine learning, treatment effects, 
radius matching, propensity score  

Acknowledgements  

Michael Lechner is also affiliated with CEPR, London, CESIfo, Munich, IAB, Nuremberg, IZA, Bonn, 
and RWI, Essen. Support of the IAB under grant for the project “Estimating heterogeneous effects 
of the Schemes for Activation and Integration on welfare recipients’ outcomes: Enhanced analyses 
by the application of machine learning algorithms” is gratefully acknowledged. A previous version 
of the paper was presented at the University of St. Gallen. We thank participants, in particular 
Michael Zimmert, as well as Michael Knaus and Gabriel Okasa for helpful comments and 
suggestions. The usual disclaimer applies.  
  



 
IAB-Discussion Paper 5|2020 7 

1 Introduction  

A long and ongoing literature is concerned with the evaluation of active labour market 
programmes (ALMP) in a selection-on-observables setting. Propensity score (PS) based matching-
type estimators are the established econometric workhorse in this literature (e.g., Imbens, 2004, 
2015; Smith and Todd, 2005; Wunsch and Lechner, 2008; Lechner and Wunsch, 2009, 2013; Biewen, 
et al., 2014; Doerr et al., 2017; Caliendo, Mahlstedt, and Mitnik, 2017; Calónico and Smith, 2017; the 
meta study of Card, Kluve, and Weber, 2018, and references therein). A common issue in PS-based 
methods is the concrete specification of the PS. The past and current literature usually estimated 
the PS using a parametric model, i.e. Probit or Logit. Covariates and functional forms were 
commonly chosen in a fairly ad-hoc manner based on monitoring the balancing properties of the 
resulting estimated PS (compare Rosenbaum and Rubin, 1984; Dehejia and Wahba, 2002). 

The emerging literature in machine learning, also named statistical learning, might help to make 
this specification less ad-hoc1. In this paper, we investigate if machine learning methods can 
improve average treatment effect on the treated (ATET) estimation when used to predict the PS. 
Estimating the PS used in matching-type estimators with machine learning could help in three 
ways: 1) detecting variables of the selection process that might otherwise be omitted by the 
researchers, but are available in the data; 2) allowing for the appropriate degree of functional 
flexibility in the PS; 3) increasing the precision of the estimate by avoiding overfitting of the PS. 
These issues become more relevant with the increased availability of rich-covariate “big data” 
datasets, the handling of which requires suitable methods. 

Although off-the-shelf machine learning methods have many well-documented advantages in 
prediction and classification, it is not obvious that using them for propensity score estimation in a 
matching framework will improve the estimation of causal effects. One potential reason is that 
they aim at a different target (compare Athey and Imbens, 2019). The goal of using a PS in matching 
estimation is to balance the covariate distribution of treated and non-treated units to obtain a 
quasi-experimental situation. Machine learning algorithms, if used for PS estimation, follow the 
goal to predict treatment participation given the covariates, as good as possible, by trading off 
bias and variance in out-of-sample comparisons. One example for why this may be a bad idea are 
covariates that are very good predictors of outcome but only weakly correlated with treatment 
assignment (compare e.g. Belloni, Chernozhukov, and Hansen, 2014). Since machine learning 
algorithms try to maximize predictive power (in a mean square error sense), they may omit such 
variables as they do not help much to predict the treatment, accepting a somewhat larger bias in 
the propensity score that is dominated by the resulting variance reduction. However, since these 
now-omitted variables are important predictors of the outcome, the small bias in the propensity 
may translate to a large one in the ATET estimation. 

While there are already some implementations of the idea of estimating the PS used in matching-
type estimators with machine learning procedures (e.g. Krumer and Lechner, 2018; Goller and 
Krumer, 2019) there is little evidence on whether such an estimator actually has favourable finite 
sample properties. In early papers, Setoguchi et al., 2008, and Lee, Lessler, and Stuart, 2010, 

                                                                    
1 For an overview of statistical learning methods, see e.g. Hastie, Tibshirani, and Friedman (2009). 
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investigated the performance of machine learning methods for estimating the PS. Those papers 
based their simulations on a data generating process (DGP) which might be well suited for their 
targeted applications in the medical context. They found machine learning predictions to 
outperform the parametric baseline methods. Pirrachio, Petersen, and van der Laan, 2015, and 
Cannas and Arpino, 2019, used the same specifications as the two above-mentioned papers and 
found the Super Learner (van der Laan, Polley, and Hubbard, 2007) and the Random Forest, 
respectively, to perform best, while the other machine learning techniques did not work 
sufficiently well in terms of bias in PS matching. As these four studies used the same data 
generating process based on only ten covariates and a treatment share of 50 percent, they might 
be less informative for microeconometric applications in which the dimension of confounders is 
usually much higher and the treatment shares very likely to deviate from 50 percent. 

In another recent work, Brown, Merrigan, and Royer (2018) evaluated machine learning PS 
estimation techniques in a simulation study. In particular, they found that Least Absolute 
Shrinkage and Selection Operator (LASSO), Boosting and Deep Learning outperformed the 
Random Forest and the baseline approach in terms of bias in their simulations. While they based 
the simulations on a high-dimensional empirical dataset with a low share of treated, this is only 
partially related to our question as they focus on using the PS as covariate in a Cox Proportional 
Hazard Model. 

Hill, Weiss, and Zhai (2011) investigated a high-dimensional empirical problem and discussed 
strategies and challenges to understand which PS method to use. They illustrated the various 
potential strategies and the resulting wide range of different estimates, highly depending on the 
choice of the empirical researcher. As they did not observe the true effect, they were not able to 
point out which strategies worked best in their setup. 

In conclusion, there is only limited practical advice from the existing literature on how to improve 
PS estimation with the goal of ‘better’ treatment effect estimation. Thus, our work contributes to 
the literature in evaluating the performance of classical and machine learning based PS estimators 
for matching-type estimators in a realistic labour market setting. 

To be as close as possible to a real situation empirical researchers might face, we use a rich 
administrative dataset of German long-term unemployed persons in an Empirical Monte Carlo 
Simulation (EMCS), as suggested by Huber, Lechner, and Wunsch (2013) and Lechner and Wunsch 
(2013). Furthermore, we compare the different estimators in a real programme evaluation 
application. 

Our database consists of a large sample of German unemployed means-tested benefit recipients 
at the end of 2009, most of them long-term unemployed, including all individuals participating in 
a specific training programme in the first quarter of 2010. There is a broad range of characteristics 
recorded for each individual, which includes all the quantifiable information relevant for the case-
workers decision to send the respective individual to a training programme or not. 

We evaluate the effect of a training programme and simulate the performance of different PS 
estimators, using the radius matching on the propensity score with bias adjustment (RMBA) 
algorithm developed in Lechner, Miquel, and Wunsch (2011), which performed best in the 
simulation of Huber, Lechner, and Wunsch (2013). To be more precise, we use two different 
machine learning techniques, namely Random Forest and LASSO to estimate the PS. We choose 
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these two as they use very different approaches in a non-parametric sense: Random Forest 
approximate the PS locally, similar to non-parametric regression, while LASSO with many 
polynomials and interaction term will approximate the PS with a flexible global function, e.g. 
similar to series estimation. In that sense, they represent two very different types of approaches. 
A large literature discusses both methods, establishing theoretical properties (e.g. Hastie, 
Tibshirani, and Friedman, 2009), as well as modifying them for usage in other types of causal 
inference problems (e.g. Belloni, Chernozhukov, and Hansen, 2014; Wager and Athey, 2018; 
Lechner, 2018; Athey, Tibshirani, and Wager, 2019). We compare these two estimators to the true, 
a random, and a PS based on a parametric ad-hoc (Probit) model, which we then use for estimating 
the ATET in the RMBA estimator. 

Our findings are mixed. LASSO performs well as PS estimator for the usage in radius matching 
especially in situations in which using Probit and Random Forest do not deliver credible estimates. 
When there are many covariates compared to observations, Probit does not work well; once the 
number of observations increases sufficiently, Probit and LASSO perform equally well. Random 
Forest tends to predict the treatment in sample well, but does not work properly as balancing 
score estimator. If the share of treated units is low, the Random Forest cannot manage to split 
deep enough to estimate a PS flexible enough to remove the selection bias. In fact, we find that PS 
estimated with Random Forest may lead to comparing control units and treated units, which are 
not sufficiently similar. Thus, whether using specific off-the-shelf machine learning algorithms 
does help depends on the context of the application. Since knowing which of the methods works 
a priori appears to be difficult, a plausible alternative is to use Causal Machine Learning methods 
instead, e.g. ‘double machine learning’ suggested by Chernozhukov et al. (2018) or the Modified 
Causal Forest suggested by Lechner (2018), that are optimized specifically for treatment effect 
estimation (for an overview see e.g. Knaus, Lechner, and Strittmatter, 2018). 

The empirical application that we conducted reflects the sensitivity to method choice. While all 
methods lead to a positive effect of the training programme, the effects based on PS estimated by 
Random Forests are about 30 percent larger compared to the estimates using LASSO or Probit as 
PS estimator. 

The structure of the rest of the paper is as follows: In Sections 2 and 3, we describe the institutional 
background and the database used for the simulation and application in detail. Section 4 
introduces the EMCS, as well as the estimators used. Sections 5 and 6 present the results of the 
simulations and the empirical application. Section 7 concludes. Additional results can be found in 
the Appendices. 

2 Institutional background  
We analyse these methodological questions with regard to the effects of a German short-term 
training programme named Determining, Reducing and Removing Employment Impediments 
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(DRR). It is a sub-programme of the Schemes for Activation and Integration (SAI) that consist of 
different training programmes as well as placement services by private providers.2 

The SAI programmes, introduced in 2009, replaced a number of earlier programmes with similar 
basic objectives. They differed from its predecessors in providing greater flexibility to local service 
providers to better suit their services to the particular needs of different unemployed persons. 
While there are many sub-programmes within SAI differing in their target groups and detailed 
goals, we focus only on the “Determining, Reducing and Removing Employment Impediments” 
sub-programme in order to analyse a rather homogeneous treatment type. The DRR sub-
programme focuses on finding out which particular attributes define the individual’s 
disadvantage, improving participants’ skills, and providing them with knowledge about suitable 
occupational fields and individual opportunities on the labour market. The target group is both 
unemployment insurance and unemployed welfare recipients. The latter are usually long-term 
unemployed with some prospects of labour market integration. Among the various types of 
Schemes for Activation and Integration, the relative importance of the “Determining, Reducing 
and Removing Employment Impediments” sub-programme is considerable. It represents 15 
percent of the 428,000 persons entering any type of Schemes for Activation and Integration (SAI) 
programme in our observation period January to March 2010.3, 4 Due to the flexible programme 
design, there is no programme duration defined à priori; the average duration is slightly less than 
two months. 

3 Data  

3.1 Dataset 
We use a large and rich dataset that not only consists of detailed characteristics on individuals, 
their labour market history and household situation, but also on the staff structure of the job 
centres responsible for them. 

The data on individuals are based on employer reports to the German social security 
administration as well as internal records of job centres and labour agencies. They contain socio-
demographic characteristics, information on the last job, and almost complete employment and 
unemployment histories5. Moreover, these data include welfare benefit receipt, welfare benefit 
sanctions, ALMP participation, household composition and income information. The variables are 
available for the unemployed welfare recipients themselves as well as for their partners. 

We augment this dataset with characteristics of the local labour market. They include the 
unemployment rate, the long-term-unemployment rate, the vacancy-unemployment ratio, the 
number of registered unemployed people and of unemployment benefit II recipients, and the 
                                                                    
2 German name of DRR: Feststellung, Verringerung, Beseitigung von Vermittlungshemmnissen; German name of SAI: 
Maßnahmen zur Aktivierung und beruflichen Eingliederung. 
3 Source: Department of Statistics of the German Federal Employment Agency – Labour Market Programme Statistics. 
4 The inflow of 428.000 people includes both unemployment insurance and unemployment welfare recipients. Our analysis will 
only consider the unemployed welfare recipients, because the means-tested nature of these benefits results in richer data 
being available on these individuals, which in turns increases the likelihood that the identifying assumption is fulfilled. 
5 The employment data contain periods of marginal employment and employment subject to social security contributions. 
Periods of self-employment and civil servant employment periods are not represented in our data. 
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inflow into various active labour market programmes. Finally, we add information on the staff 
structure of the job centres. Job centre employee data is available as full-time equivalents. The 
most important piece of information in this context is the average number of welfare recipients for 
which a job centre employee is responsible. It provides a measure of the intensity of activation. 
Other available measures in this context are, e.g. the gender distribution of job centre employees, 
the distribution of contract types, e.g. fixed-term versus open ended or employee versus civil 
servant, the presence of equal opportunity officers, and the wage distribution among the job 
centre employees. 

3.2 Treatment and sample selection 
Our sample design is similar to the one used by Harrer, Moczall, and Wolff (2019), who analysed 
the effectiveness of the entire SAI. Our treatment group consists of the total inflow from January 
to March 2010 into the “Determining, Reducing and Removing Employment Impediments” sub-
type of the SAI who were unemployed and receiving means-tested benefits on December 31st, 
2009. The control group represents a 20 percent random sample of persons likewise unemployed 
and receiving means-tested welfare benefits on December 31st, 2009, who did not enter any SAI 
programme from January to March 2010 but may have entered other programme types. 

For data quality reasons, we restrict the sample to individuals administered jointly by the Federal 
Employment Agency and municipalities.6 Moreover, we only include individuals aged 25 to 55 who 
are not disabled. For younger welfare recipients, various special rules and group-specific 
programmes exist so that they are subject to more intense activation than older welfare recipients 
are. Finally, we dismissed observations from our sample due to missing or obviously wrong values 
in some of the variables. The remaining final sample of 276,637 observations is analysed in the 
application in Section 6 and our EMCS described in Section 4. 

3.3 Descriptive statistics 
Our sample consists of 14,817 treatment group and 261,820 control group observations. For 
brevity, we only present descriptive statistics of selected variables. Complete descriptive tables for 
all the covariates are available upon request. The selected variables reflect the aspects covered by 
the variable groups that in Lechner and Wunsch (2013) were found to be sufficient to remove most 
biases. 

                                                                    
6 Some job centres are run by municipalities only. Data on unemployment benefit II recipients from these job centres were 
partly incomplete in particular in the years 2005 and 2006. Therefore, these data are not suitable to construct some of the 
covariates on past labour market history for our analysis. Moreover, for them no information is available about the full-time 
equivalents and composition of the job centre staff. Therefore, individuals from these job centres, who represent less than 13 
per cent of the unemployed unemployment benefit II recipients in the year 2009, are not included in our analysis. 
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Table 1: Descriptive statistics of selected covariates 
Variable Treated Controls 
  Mean SD Mean SD 

Cumulated duration in regular employment 3-36 months after treatment 
(Outcome) 218 (314) 162 (282) 

Female 0.44   0.46   

Age at sampling date in years 38 (8) 40 (9) 

Receives some income from employment (<15h/week) 0.17   0.23   

Cumulated number of days in welfare receipt in year before sampling 
date 312 (100) 325 (86) 

Participated in Schemes by Providers1) 0.14   0.06   

Participated in classroom training 0.61   0.45   

Job centre district: Inflow into Schemes by Providers1) relative to 
jobseeker stock in 2009q4 0.02 (0.01) 0.01 (0.01) 

Job centre district: Inflow into In-Firm Training2) relative to jobseeker 
stock in 2009q4 0.004 (0.002) 0.004 (0.002) 

Days since last employment3) 1,904 (1877) 2,262 (2045) 

Cumulated days in regular employment in five years before sampling 
date 230 (372) 183 (334) 

Secondary schooling degree: None 0.12   0.15   

Secondary schooling degree: Lower 0.47   0.44   

Secondary schooling degree: Intermediate  0.29   0.28   

Secondary schooling degree: University of applied science qualification 0.04   0.04   

Secondary schooling degree: University qualification (A-level equivalent) 0.07   0.08   

Vocational degree: None 0.50   0.51   

Vocational degree: Non-college 0.47   0.44   

Vocational degree: College 0.03   0.04   

Family status: Single 0.42   0.38   

Family status: Married 0.26   0.30   

Family status: Divorced/widowed 0.23   0.25   

Family status: Cohabiting 0.08   0.08   

Has partner 0.34   0.36   

Partners vocational degree: None 0.20   0.20   

Partners vocational degree: Non-college 0.13   0.13   

Partners vocational degree: College 0.01   0.01   

Notes: SD: Standard deviation, (only reported for non-binary variables). Descriptive statistics of full set of covariates available 
upon request. 1) Schemes by Providers are those programmes among the SAI, which are organised by private providers like 
private placement services or classroom training. 2) In-Firm Training are those programmes among the SAI, which are 
organised as internships in firms. 3) Mean and SD calculated only for persons who had a last job.  
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 

However, in contrast to the sample studied in Lechner and Wunsch (2013) our sample consists to 
a far higher extent of people who did not work for various years. Therefore, we included in more 
detail covariates on the labour market history of the last five years. 

As Table 1 shows, treatment and control units, with 218 versus 162 days in regular employment in 
a three-year period after treatment, differ in terms of our outcome variable of interest. There are 
also considerable differences in pre-treatment characteristics. 

Examples are the days since last employment with 1,904 versus 2,262 days of people who 
previously were employed, and the cumulated number of days in regular employment in the 
previous five years at 230 compared with 183 days. This shows that persons with more recent 
labour market experience are somewhat more likely to participate in DRR. There are no great 



 
IAB-Discussion Paper 5|2020 13 

differences in terms of sex or age. Most striking is the observation that 61 percent of treatment 
group versus 45 percent of control group individuals had participated in a classroom-training-type 
programme before. “Classroom training” in this context refers to non-in-firm trainings before the 
2009 reform that introduced the SAI programme. 

The mean values of education and family status and partner characteristics included in Table 1 in 
most cases do not differ remarkably between treated and control individuals. Nevertheless, these 
descriptive statistics show that selection into treatment is non-random with respect to some 
variables. The rest of this paper is therefore concerned with modelling selection on these 
observable characteristics based on our extensive set of potential confounders. 

4 Methodology  

4.1 Target, notation and identification  
In the following, we will use the notation for treatment effects estimation using the potential 
outcome framework of Rubin (1974). Participation in a training programme, as discussed in 
Section 3.2, is indicated with 𝐷𝐷𝑖𝑖 as the binary treatment variable, while 𝐷𝐷𝑖𝑖 = 1 indicates that 
individual i (𝑖𝑖 = 1, … ,𝑁𝑁) takes part in a training programme and 𝐷𝐷𝑖𝑖 = 0, otherwise. The outcome 
variable 𝑌𝑌𝑖𝑖 denotes accumulated days in employment of individual i three years after the 
treatment. Let 𝑌𝑌𝑖𝑖𝑑𝑑: = 𝑌𝑌𝑖𝑖(𝐷𝐷𝑖𝑖 = 𝑑𝑑) denote the potential outcome if individual i receives treatment 
𝑑𝑑 ∈ {0,1}.7 Since each individual can only receive either treatment or non-treatment one potential 
outcome is observable, the other remains counterfactual: 𝑌𝑌𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑌𝑌𝑖𝑖1 + (1− 𝐷𝐷𝑖𝑖)𝑌𝑌𝑖𝑖0. While this 
implies that individual treatment effects are not directly observable, imposing assumptions may 
make it possible to identify treatment effects at various aggregation levels, e.g. the average 
treatment effect (ATE): 𝜏𝜏 = 𝐸𝐸(𝑌𝑌𝑖𝑖1 − 𝑌𝑌𝑖𝑖0). The focus of this work is on the ATET, i.e. 𝜃𝜃 = 𝐸𝐸(𝑌𝑌𝑖𝑖1 −
𝑌𝑌𝑖𝑖0|𝐷𝐷𝑖𝑖 = 1).  

Further, we investigate situations in which treatment assignment is non-randomly determined 
and empirical researchers opt for a selection-on-observables approach using a matching-type 
estimator. This is an attractive approach in situations in which there are arguably all important 
confounders available as covariates, denoted by 𝑋𝑋𝑖𝑖. Confounders are those characteristics jointly 
affecting selection into treatment as well as potential outcomes. Controlling for those 
confounding factors lead to potential outcomes, which are independent of the treatment.  

In many applications, this set of control variables might be large, like in our empirical setup, 
leading to a curse of dimensionality in matching-type estimators. Rosenbaum and Rubin (1983) 
showed the equivalence of conditioning on all X and on a one-dimensional balancing score, the 
so-called propensity score (PS), defined as 𝑝𝑝(𝑥𝑥) = 𝑃𝑃[𝐷𝐷𝑖𝑖 = 1|𝑋𝑋𝑖𝑖 = 𝑥𝑥]. Matching-type estimators 
commonly exploit this equivalence. As described in Rubin (2007), the resulting estimator consists 
of two stages. First, estimate the PS. Second, use this estimated score to compare treated with 
similar non-treated units. 

                                                                    
7  Throughout the work, random variables are indicated by capital letters and realizations of these random variables by 
lowercase letters. 
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Throughout we use the following four identifying assumptions, which are standard in the 
selection-on-observables literature: 

A.1: 𝑌𝑌𝑖𝑖1,𝑌𝑌𝑖𝑖0 ⊥ 𝐷𝐷𝑖𝑖|𝑋𝑋𝑖𝑖 = 𝑥𝑥,    ∀𝑥𝑥 ∈ 𝜒𝜒, Conditional Independence Assumption (CIA) 

A.2: 0 < 𝑃𝑃[𝐷𝐷𝑖𝑖 = 1|𝑋𝑋𝑖𝑖 = 𝑥𝑥] = 𝑝𝑝(𝑥𝑥) < 1, common support 

A.3: 𝑋𝑋𝑖𝑖0 = 𝑋𝑋𝑖𝑖1, exogeneity of covariates 

A.4: 𝑌𝑌𝑖𝑖 = 𝑌𝑌𝑖𝑖1𝐷𝐷𝑖𝑖 + 𝑌𝑌𝑖𝑖0(1−𝐷𝐷𝑖𝑖), Stable Unit Treatment Value Assumption (SUTVA) 

A.1 might be relaxed to  𝑌𝑌𝑖𝑖0 ⊥ 𝐷𝐷𝑖𝑖|𝑋𝑋𝑖𝑖 = 𝑥𝑥 for the case of ATET estimation. This assumption ensures 
that all confounders are observed and rules out the existence of further (unobserved) confounders 
jointly influencing the treatment and the potential outcome under non-treatment conditional on 
the observed X, or in this case conditional on the PS. A.2 ensures common support by bounding 
the treatment probability away from 0 and 1, and can also be relaxed in ATET estimation to 𝑝𝑝(𝑥𝑥) <
1. The two latter assumptions require that covariates are not affected by the treatment (A.3) and 
that there are no spill over effects between the treatment groups (A.4). Under A.1-A.4, we have: 

𝜃𝜃 = 𝐸𝐸[𝑌𝑌𝑖𝑖1�𝐷𝐷𝑖𝑖 = 1] − 𝐸𝐸[𝑌𝑌𝑖𝑖1�𝐷𝐷𝑖𝑖 = 0]            

= 𝐸𝐸[𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 1] − 𝐸𝐸[𝐸𝐸[𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 0,𝑝𝑝(𝑥𝑥)]|𝐷𝐷𝑖𝑖 = 1] 

Which means that we can identify the (causal) ATET by comparing units in treatment and non-
treatment that are comparable with respect to their PS.  

4.2 Empirical Monte Carlo Simulation 
Knowing the true answers of an empirical question is usually not possible. For this reason, 
evaluation studies tend to do simulation studies in which the researcher specifies the DGP, and 
therefore all dimensions of the true DGP are known. The drawback of those kinds of studies is that 
artificially created datasets might not capture the relationships of real applications.  

To be as close as possible to applications in the empirical research literature, Huber, Lechner, and 
Wunsch (2013), and Lechner and Wunsch (2013) developed a so-called Empirical Monte Carlo 
Study (EMCS). The idea is to use a DGP that exploits the structure of an empirical dataset to its full 
extent. For example, outcomes and covariates of real data are used. Of course, there are 
limitations, since the researcher needs to control some features to allow for generalizations, like 
the sample size or the share of treated in our case. Further, the empirical dataset must be large 
enough to plausibly presume that the random samples come from an infinite population. This is 
the case for our data as described in Section 3, which is a typical large-scale administrative dataset. 

Every EMCS used to evaluate a treatment effects model consists of three basic steps. First, a true 
PS is estimated in the full population.8 Second, a sample is drawn from the control units, a placebo 
treatment is simulated according to the true PS and the effects are estimated in this sample. Last, 
this is repeated many times and the performance is evaluated. 

                                                                    
8 Since our goal is to evaluate different PS estimation techniques, we do not want to favour one specific method. Therefore, the 
‘true’ PS is constructed as a combination of the separately estimated PS using the Probit, LASSO and Random Forest. 
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Table 2: Empirical Monte Carlo Study 
1) The PS is estimated in the full data. The true score is constructed as a combination of the separately estimated scores 

using the Probit, LASSO and Random Forest as: 

𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) =
1
3

(𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡(𝑥𝑥) + 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥) + 𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑝𝑝𝑅𝑅𝑅𝑅𝑝𝑝𝑡𝑡𝑡𝑡𝑅𝑅𝑡𝑡(𝑥𝑥)) ̂ ̂ ̂ ̂

2) Remove all the treated observations from the population.9 

3) Draw a sample of N units from the (remaining) population of control observations and simulate a placebo treatment in 
this draw, for which the treatment effect is zero by definition, as: 

𝑑𝑑  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖(�̂�𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) × 𝜙𝜙), 
where 𝜙𝜙 ∈ {2,5} is to modify the share of (placebo) treated. 

4) Estimate the PS in the sample using the different estimation techniques described in Section 4.4 and use those 
respective PS to estimate the ATET using the RMBA estimator described in Section 4.3. 

5) Repeat step 3) & 4) R times. 

6) Calculate performance measures. 

Notes: While 𝜙𝜙 = 2  leads to a share of treated of about 10 percent, 𝜙𝜙 = 5 to a share of treated of about 25 percent.  
Source:  Own description. 

We look at various performance measures, when evaluating the performance. First, the bias is 
calculated as mean of the deviation from the true effect, i.e. 𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏 = 1

𝑅𝑅
∑ (𝜃𝜃�𝑡𝑡𝑅𝑅
𝑡𝑡=1 − 𝜃𝜃�0). 𝜃𝜃�𝑡𝑡is the 

estimated ATET of the matching step in repetition r, 𝜃𝜃0 the true effect (which is equal to zero since 
we discard all treated units). Most important is the mean squared error (MSE) of the ATET, 
calculated as  𝑀𝑀𝑀𝑀𝐸𝐸 = 1

𝑅𝑅
∑ (𝜃𝜃�𝑡𝑡 − 𝜃𝜃0𝑅𝑅
𝑡𝑡=1 )2. Other measures we look at are the mean absolute deviation 

(MAD), kurtosis, skewness, the mean of the estimation (standard) error in the matching step, as 
well as the variance of 𝜃𝜃�𝑡𝑡. Further common support statistics are reported, as the mean share of 
observations, as well as the mean share of treated observations remaining in the common support. 
To investigate the performance of the first-stage estimation, we look at how well the various 
methods do in the PS estimation. Here we report the mean correlation of the estimated with the 
true PS, as well as the (in-sample) prediction MSE. Since radius matching compares treated and 
non-treated units, which are close to each other in terms of PS, the correct ordering of the 
estimated PS is important. We show two statistics for this, namely the (mean of) Kendall’s Tau and 
the (mean of the) Spearman Rank Correlation coefficient.10 

According to the procedure presented in Table 2, we simulated four different scenarios with two 
different treatment shares and two different sample sizes (see Table 3). We use 10 and 25 percent 
as treatment shares, because the number of treated is usually much smaller than the number of 
controls in active labour market programme evaluations. Similarly, samples smaller than our 
minimum sample size of 4,000 observations rarely occur in observational studies in the labour 
market context. The maximum of 16,000 observations is chosen due to the increasing 
computational burden of larger samples. 

Another parameter to determine in simulations is the number of repetitions, R. Ideally, one would 
like to set this parameter as large as possible to minimize simulation noise. Since this noise 
depends on the variance of the estimators, which declines with sample size, we repeated each 
estimation for the smaller sample 1,000 times and the larger sample 250 times. In case of √𝑁𝑁 -
convergence, this will keep the simulation error approximately constant. 
                                                                    
9 As well as all observations with 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > 0.2̂  to ensure that the PS after transformation in step 3 are still between 0 and 1. This 
accounts for less than 1 percent of all control observations. 
10 Spearman Rank Correlation is defined as: 𝐵𝐵𝑅𝑅 = 1 − 6∑(𝑡𝑡𝑅𝑅𝑅𝑅𝑟𝑟(𝑝𝑝�𝑖𝑖)−𝑡𝑡𝑅𝑅𝑅𝑅𝑟𝑟(𝑝𝑝�𝑖𝑖

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡))2

𝑅𝑅(𝑅𝑅2−1)
, Kendall’s Tau is defined in the following way: 𝐵𝐵𝐾𝐾 =

2
𝑅𝑅(𝑅𝑅−1)

∑ 𝑏𝑏𝑖𝑖𝑠𝑠𝐵𝐵�𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗�𝑖𝑖<𝑗𝑗 𝑏𝑏𝑖𝑖𝑠𝑠𝐵𝐵(𝑝𝑝𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  𝑝𝑝𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). ̂ ̂
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Table 3: Summary of DGP’s 
Scenario Treatment share Sample size (N) Repetitions (R) 

A 10 % 4,000 1,000 

B 25 % 4,000 1,000 

C 10 % 16,000 250 

D 25 % 16,000 250 

Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 

In the following sections, we describe the matching estimator used for the ATET estimation as well 
as the different “first-stage” PS estimation techniques. 

4.3 Matching estimator 
While there are several different matching algorithms available, we use the bias-adjusted-radius-
matching-on-the-propensity-score estimator (RMBA) of Lechner, Miquel, and Wunsch (2011). This 
estimator combines the features of distance-weighted radius matching with bias adjustment to 
remove biases due to mismatches and performed well in Huber, Lechner, and Wunsch (2013).11 

It has been shown by Lechner and Strittmatter (2019), among others, that trimming treated 
observations may be important if there is thin or even lacking support to guard against bias and 
excessive importance of specific control variables. In the setup of this work trimming does not 
change the ATET, since the true treatment effect is homogenous (and zero) by construction. The 
trimming rule used follows the recommendation of Lechner and Strittmatter (2019) and removes 
too important, i.e. control units with a weight larger than 5 percent, and off-support observations 
jointly for treated and controls. 

4.4 Propensity score estimation 
For the sake of simplicity, we focus on five different approaches to estimate the PS. One 
benchmark case, which is usually not observed in observational studies, is provided by the true 
PS. As another benchmark case, we use a non-information PS consisting of i.i.d. random numbers 
only.  

The other three approaches are choices researchers might use in their work, namely a Probit, a 
Random Forest, and a LASSO-based estimator. While those methods are known to be good 
prediction techniques there is little knowledge how they perform in empirical labour market 
evaluation studies for estimating a causal effect in matching estimators. We describe each of the 
estimation techniques used in the following in more detail, as well as how they are implemented 
in the EMCS. 

4.4.1 Probit 

Since the PS is the probability of receiving the treatment conditional on the confounders, the 
Probit estimation, especially in the past, was the usual choice for this first step estimation.12  

                                                                    
11 The radius is determined data-driven as 1.5 times the maximum pair matching distance as suggested by Lechner, Miquel, and 
Wunsch (2011). 
12 Similarly, one might choose the Logit estimator, which is omitted here for the sake of brevity. 
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𝑝𝑝(𝑥𝑥) = Φ(𝑥𝑥�̂�𝛽̂ ) is estimated for each individual, where Φ(∙) is the cumulative distribution function 
of the standard normal distribution. This parametric, non-linear technique is well suited for those 
kinds of prediction problems if the following four conditions are satisfied. 1) The true selection 
equation is well approximated by the Probit link function. 2) The set of confounding characteristics 
and their relevant measurement (i.e. logs, particular polynomials, etc.) is known. 3) The required 
functional flexibility of the covariates, in particular with respect to interactions of the variables can 
be well approximated by the researcher. 4) The final set of covariates (incl. all terms that enter the 
linear index in the probit link function) is not too large with respect to sample size. 

Usually in observational studies ensuring conditions 1) to 3) is subject to a credible line of 
argumentation, and in most cases, even with a strong intuition, hard to specify correctly. Further, 
including every variable and functional transformation thereof contradicts the fourth condition in 
most settings. Too many covariates may decrease the precision of the estimator or may make 
estimation numerically infeasible.13 

4.4.2 LASSO 

The LASSO as proposed by Tibshirani (1996) is a shrinkage estimator, which works like an OLS 
estimator with penalized coefficients. Since we are estimating a probability-like quantity, we 
oppose this potential issue of predicting values below 0 or above 1 by using a Logit version of the 
LASSO. 14 Therefore, the following minimization function is used:  

min
𝛽𝛽
�∑ [−𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝛽𝛽 + log(1 + exp(𝑥𝑥𝑖𝑖𝛽𝛽))] + 𝜆𝜆∑ �𝛽𝛽𝑗𝑗�𝑟𝑟

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1 �       (1) 

and the PS is obtained as 𝑝𝑝(𝑥𝑥) = exp (𝑥𝑥𝛽𝛽�)
1+exp (𝑥𝑥𝛽𝛽�)

. ̂

The last term in equation (1) is to penalize the size of the 𝑗𝑗 = 1, … ,𝑘𝑘 coefficients, with k being the 
number of covariates. 𝜆𝜆 represents the penalty term. The larger this penalty term, the more the 
coefficients are pushed towards zero and variable selection takes place, i.e. coefficient become 
exactly zero. The idea behind this procedure is to shrink the coefficients of those covariates to zero 
that contain no or little predictive information about the dependent variable.15 

Determining the size of the penalty term is therefore crucial. This choice represents a trade-off 
between bias, which 𝜆𝜆 increases, and variance, which decreases when 𝜆𝜆 increases. Here, the 
penalty term is chosen by 5-fold cross-validation minimizing the out-of-sample mean squared 
error (MSE). 

4.4.3 Random Forest 

In the machine learning literature, the Random Forests algorithm developed by Breiman (2001) is 
a widely used non-parametric and non-linear estimation technique. It is built as an ensemble of 
Regression Trees, which are to some extent randomly constructed. A Regression Tree recursively 
splits the covariate space into separate non-overlapping areas as it minimizes the MSE of the 

                                                                    
13 Too many covariates might not only decrease precision, but also reduce the common support (compare D’Amour et al., 2017) 
as in-sample predictive power increases. 
14 Compare Hastie, Tibshirani, and Friedman (2009: 125). 
15 A ‘double-selection’ alternative is proposed by Belloni, Chernozhukov, and Hansen (2014), in which additionally variables are 
captured that are highly correlated to the outcome and mildly related to the treatment selection. To be consistent with the 
other methods in this work we focus on using the LASSO capturing treatment selection. 
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prediction of the outcome. The resulting structure is reminiscent of a rotated tree, as one observes 
the trunk with all the observations in the beginning, which is split into finer branches the further 
you go down. The tree predictions are the average of the outcome of those observations falling 
into the same end-nodes, so called leaves. 

Like in LASSO, there is a trade-off between bias and variance: Deeply grown trees have lower bias 
and higher variance compared to shallow trees. This trade-off is controlled by specifying the 
minimum number of observations in each leaf.16 For a Random Forest several deep, low-bias trees 
are estimated on random subsamples and the predictions are averaged over those trees.17 In our 
simulations, 600 trees are built for each forest. The more trees are estimated, the smoother the 
prediction become, but computation time increases. Further, to de-correlate the trees only a 
random subset of covariates is considered at every split point within the tree building process.18  

Finally, we use the so-called honest splitting rule, as proposed by Athey and Imbens (2016). Using 
independent samples for building the tree and for making the predictions contributes to higher 
prediction accuracy. This comes with the price to pay in terms of reduced sample sizes. As an 
example, in the N=4,000 setting only 1,000 observations are used to build the tree structures, 
another 1,000 to do the predictions.19 

4.4.4 Sets of covariates 

The Methods described above are able to work with different kinds of variables (as described in 
Section 3) in other ways, and therefore the sets of covariates in the PS estimation differ for each 
method. Probit and LASSO cannot distinguish between ordered and unordered categorical 
variables. Unordered variables are therefore split into binary variables for each category.20 This 
results in 309 covariates for the Probit estimation.  

Since the LASSO has a variable selection property, it is able to solve the objection of including too 
many covariates up to a certain degree.21 To be more flexible, we are able to increase the set of 
potential confounding variables by including second-order polynomials and interactions of all 
continuous variables resulting in a full set of 1,011 covariates available for the LASSO. Of course, 
ideally, one would like to include interactions up to a higher degree, to be as flexible as possible, 
but since the potential set of covariates increases exponentially computational resources are 
quickly exhausted. 

The Random Forest is able to work with unordered categorical variables, while in the other 
methods dummies are used instead.22 Further, there is no need to include transformation of 
variables, like polynomials and interactions in the LASSO, as the tree structures are able to 
incorporate any interactive and non-linear nature of the covariate structure. Therefore, this 
                                                                    
16 In our simulations, we used a minimum leaf size of five observations. 
17 The random subsamples can be generated by either bootstrapping or subsampling. We follow the recommendation of Wager 
and Athey (2018) to use subsampling. In the simulations and application, the subsampling size is a share of 50 percent of the 
sample size. 
18 In the simulations and application, the number of covariates is chosen to be 50. 
19 Subsampling 50 percent of the sample, as well as using half of it for the tree building and the other half for predicting. 
Lowering the sample size at first decreasing accuracy, as the variance is higher in smaller samples. Still, this honest split should 
reduce the bias coming from overfitting. 
20 Examples for which there are no natural ordering are family status, last occupation or nationality. 
21 In fact, increasing the number of covariates also decreases the speed of convergence, which might harm the estimator at 
some point more than it helps. 
22 For information how this works and how it is implemented see Hastie, Tibshirani, and Friedman (2009: 310). 
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method ensures a very large degree of flexibility, as it can, at least asymptotically, pick-up any non-
linearity. The set of covariates is therefore substantially lower, i.e. 109 covariates, compared to the 
other methods. Still, this is only another way to work with the same information and there should 
be no advantage or disadvantage compared to the other methods. To reduce the computational 
burden binary variables representing less than 2 percent of the observations are removed in all the 
methods, as well as we only keep one if there are multiple covariates, which show correlations of 
more than ±0.98  in the respective sample. 

5 Simulation 
We evaluate the performance of the various PS methods in the estimation of the ATET using radius 
matching. For the sake of brevity, summaries of the full results are discussed here, while detailed 
and additional results tables are presented in Appendices Appendix A and Appendix. 

Before discussing the results, as this may be an important issue in applied research, we like to point 
out convergence problems of the Probit estimation in the small sample. We report the results for 
all repetitions in the main results. Further, we report the results for only converged approaches in 
the Appendix, as common practice in the literature is rather to modify the specification of the 
Probit instead of using a non-converged PS in applied work. The results do slightly differ, but the 
general conclusions are equivalent, however, this points to difficulties in using the Probit in 
settings with low number of observations and a large set of confounders, especially if the share of 
treated is low.23 

Table 4: Summary of Simulation Results, Propensity Score Estimation 
  Spearman Rank Correlation MSE 
  N = 4,000 N = 16,000 N=4,000 N=16,000 
Treatment share 10% 25% 10% 25% 10% 25% 10% 25% 
Probit 0.36 0.60 0.73 0.87 8.50 17.25 8.56 16.60 
Random Forest 0.72 0.82 0.81 0.86 8.19 16.72 8.16 15.92 
LASSO 0.77 0.86 0.87 0.92 8.62 16.58 8.64 16.56 
True - - - - 8.60 16.53 8.63 16.54 
Random 0.00 0.00 0.00 0.00 9.30 20.90 9.33 20.90 

Notes: Figures shown are the mean of the Spearman Rank Correlation of the estimated PS compared to the true PS, as well as 
the (in-sample) MSE (times 100) of the prediction over 1,000, respectively 250 simulation repetitions. The full results can be 
found in Tables A.1.2, A.2.2, A.3.2 and in the Appendix. True and Random indicates the true, respectively the randomized PS.  
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 

To investigate the performance of the PS estimation in Table 4 we find the (in-sample) prediction 
MSEs to show the Random Forest predicting best. More important is the ordering of the PS 
determining which control units are matched to the respective treated units. The results of the 
Spearman Rank Correlation with the true PS are depicted in Table 4. We find every method to 
perform better in those settings with higher treatment shares and/or more observations. The 
Random Forest and the LASSO both reach the highest rank correlations, while the Probit is doing 

                                                                    
23 For N=4,000 and 10 percent treated about 35 percent of replications, for 25 percent treated about 4 percent of replications did 
not converge. In the larger samples, this problem is not present. Compare Tables A.1.1, A.1.2, A.2.1 and A.2.2 in the Appendix.  
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rather poor in the small samples. With more observations, i.e. effectively a lower number of 
covariates relative to observations, the Probit becomes more competitive and reaches a higher 
Spearman Rank Correlation compared to the Random Forest in the higher treatment share. This 
may indicate that the underlying model is well approximated by the probit functional form. 
Further, as expected, the random PS obtains values of (close to) zero. 

Figure 1: Propensity scores by treatment status, N=4,000, 10% treated 

 
Notes: Histograms with PS on the horizontal axis. Top left is the Probit PS, top right Random Forest, bottom left and right the 
LASSO estimated and true PS. Each from the same one simulation with N=4,000 and 10% treatment share. Control units are 
light, treated units dark shaded. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 

For the Random Forest, having a low treatment share may contribute to splitting less deeply than 
it should.24 Therefore having a higher treatment share enables the growing of deeper trees, which 
might be necessary for balancing the covariates in the matching estimator. Figure 1 provides some 
insights into the estimated PS of the respective methods, as well as the true PS for the small sample 
and low treatment share.25 

First to note is that the Random Forest in the top right graph looks quite different to the other 
estimates, as well as the true PS. Not being able to split deep enough leads to a narrower 
distribution of estimated PS and treated and controls are more separated compared to the other 
methods. On the one hand, this reduced overlap leads to lower common support. On the other 
hand, this might lead to matching “wrong” control to the respective treated units. Despite there 
might be a tendency towards a wider spread of the Random Forest in the larger sample, Figure 2 
shows generally a similar pattern. 

                                                                    
24 Having a low share of treated, i.e. a large number of zeros and a low number of ones, in the outcome variables makes it more 
likely that there cannot be any improvement in terms of MSE by splitting a certain leaf, leading to large final leaves after few 
splits. In fact, the average leaf size for the Random Forest is larger in both simulations with the low treatment share compared 
to the higher treatment share. 
25 Figures for the other simulations scenarios can be found in Appendix B. 
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Figure 2: Propensity scores by treatment status, N=16,000, 10% treated 

 
Notes: Histograms with PS on the horizontal axis. Left is the PS estimated by the Random Forest, right the true PS. Each from 
the same one simulation with N=16,000 and 10% treatment share. Control units are light, treated units dark shaded. LASSO and 
Probit PS can be found in Appendix B.2. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 

To investigate this further, we provide matching quality measures in Table 5 showing which 
quantiles of the distribution of control units’ PS are matched in the simulation to the respective 
quantiles of the distribution of the treated PS. 

Table 5: Matching-Quality 

  𝑞𝑞0,1 𝑞𝑞0,3 𝑞𝑞0,5 𝑞𝑞0,7 

Panel A:  N=4,000, 10% treated 

Probit 0.31 (0.05) 0.59 (0.05) 0.76 (0.03) 0.89 (0.02) 

Random Forest 0.80 (0.54) 0.91 (0.36) 0.96 (0.22) 0.99 (0.11) 

LASSO 0.27 (0.03) 0.55 (0.03) 0.74 (0.02) 0.88 (0.01) 

True 0.26 (0.00) 0.54 (0.00) 0.74 (0.00) 0.88 (0.00) 

Panel B:  N=4,000, 25% treated 

Probit 0.27 (0.02) 0.56 (0.04) 0.74 (0.04) 0.88 (0.04) 

Random Forest 0.46 (0.17) 0.69 (0.10) 0.83 (0.04) 0.94 (0.03) 

LASSO 0.30 (0.02) 0.61 (0.02) 0.79 (0.01) 0.91 (0.01) 

True 0.29 (0.00) 0.59 (0.00) 0.79 (0.00) 0.91 (0.00) 

Panel C:  N=16,000, 10% treated 

Probit 0.28 (0.05) 0.56 (0.06) 0.73 (0.06) 0.85 (0.05) 

Random Forest 0.66 (0.40) 0.82 (0.27) 0.91 (0.17) 0.97 (0.10) 

LASSO 0.26 (0.01) 0.55 (0.01) 0.74 (0.01) 0.88 (0.01) 

True 0.26 (0.00) 0.54 (0.00) 0.74 (0.00) 0.88 (0.00) 

Panel D:  N=16,000, 25% treated 

Probit 0.30 (0.01) 0.60 (0.01) 0.79 (0.00) 0.91 (0.00) 

Random Forest 0.47 (0.18) 0.69 (0.09) 0.85 (0.07) 0.94 (0.02) 

LASSO 0.30 (0.01) 0.60 (0.01) 0.79 (0.00) 0.91 (0.00) 

True 0.29 (0.00) 0.59 (0.00) 0.79 (0.00) 0.91 (0.00) 

Notes: This table shows which quantiles of the control samples are matched to the respective quantiles of the treated units. 
Mean values over all 1,000, respectively 250 repetitions, are reported. Mean absolute deviation to the quantiles of the true PS 
method are reported in parentheses. 𝑞𝑞𝑥𝑥 stands for the x-percent quantile of the treated. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 
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As can be seen in Table 5 in every panel the Random Forest estimates lead to the most distinct 
matching of quantiles. This is most pronounced in the scenarios of low treatment shares. Of 
course, the matching quantiles of the true PS is not necessarily the best, but a valid benchmark. 
While the LASSO is in most situations the closest to the true PS matching quantiles, the Random 
Forest is, especially in the 10 percent quantile far away from the true PS results. Despite the 
“matching-quality” becoming closer to the true PS for the higher quantiles, the estimates of the 
Random Forest does not seem to work well, especially in low treatment shares, in the context of 
matching-type estimators. Table 6 shows the observed final performance of the estimated PS in 
the RMBA estimator. 

Table 6: Summary of Simulation Results, Matching 
  (1) (2) (3) (4) (5) (6) 
  Bias MSE Variance CS (%) CS (%), treated SB 

Panel A: N=4,000, 10% treated 

Probit 21.95 885.52 403.54 92.8 64.7 8.20 

RF -26.15 2,258.05 1,574.16 56.7 90.2 28.18 

LASSO 5.03 398.29 372.95 98.1 99.4 5.49 

True -0.39 341.25 341.10 98.3 99.6 5.33 

Random 20.47 773.07 353.89 99.6 99.9 16.34 

Panel B: N=4,000, 25% treated 

Probit 11.68 310.55 174.05 98.0 95.6 3.13 

RF -2.18 275.33 270.57 94.2 97.4 9.41 

LASSO 3.63 213.93 200.73 98.9 99.1 4.03 

True -0.32 226.28 226.18 99.0 99.0 4.06 

Random 24.29 762.48 172.80 99.9 99.9 19.46 

Panel C: N=16,000, 10% treated 

Probit 1.56 109.86 107.45 99.1 95.1 2.47 

RF -12.40 440.31 286.46 74.9 96.8 17.89 

LASSO 1.40 86.05 84.08 99.4 99.9 2.67 

True -0.19 95.90 95.86 99.5 99.9 2.70 

Random 20.63 507.72 82.22 99.9 99.2 16.09 

Panel D: N=16,000, 25% treated 

Probit 2.63 49.80 42.87 99.7 99.3 1.56 

RF 1.10 72.73 71.50 95.3 98.6 8.50 

LASSO 1.15 42.34 41.03 99.7 99.8 2.19 

True -0.72 53.62 53.10 99.7 99.4 2.04 

Random 24.52 641.45 40.42 99.9 99.9 19.39 

Notes: Figures shown are the mean of the respective measure over 1,000 (in Panel A&B) or 250 (in Panel C&D) replications. RF 
stands for Random Forest. Random indicates the randomized PS. Bias is the mean bias over all simulation repetitions. MSE is 
the mean squared error. CS and CS, treated is the common support (for the treated) and SB is the (mean) absolute standardized 
bias in covariate balancing of the ten most important confounders. The full results can be found in Tables A.1.1, A.2.1, A.3.1 & 
A.4.1 in the Appendix. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 

In column (6) of Table 6, we observe the absolute mean standardized bias in covariate balancing 
(SB), which is one rough measure of how well the covariates are balanced using the respective PS 
estimate.26 While the balancing ability of the Probit increased considerably in Panels B-D 
                                                                    
26 As there is no clear guidance, commonly used ad-hoc rules suggest that balancing bias should not exceed 20 (e.g. Imbens and 
Rubin, 2015), or in more restrictive settings 10 (e.g. Normand et al., 2001). Further, despite Cannas and Arpino (2019) found this 
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compared to Panel A, the seemingly good Random Forest prediction led to rather worse covariate 
balancing. For the higher treatment shares the balancing statistics is acceptable. The true and the 
LASSO PS showed good balancing properties throughout the results. 

Although it is not clear how low the SB should be and if this translates directly into good final ATET 
estimates this is indicative for the bad performance of the Random Forest in the matching step 
with 10 percent treated as can be seen in Panels A and C of Table 6, columns (1)-(3). The LASSO PS 
is only slightly biased and the resulting MSE is the lowest despite the true PS results in Panel A and 
even lower than the true PS in Panel C (compare Abadie and Imbens, (2016) for this phenomenon). 
Panels B and D are giving some insights into the simulations with the higher treatment share. All 
estimation techniques performed better compared to the lower treatment share, with the LASSO 
outperforming the other PS in terms of MSE and MAD. More observations, as can be seen in Panels 
C and D, generally improves the performance of every method. Estimating the PS with the Probit 
is benefiting from the larger sample especially by reducing the mean bias compared to the low 
observations scenarios. The Random Forest PS works decently well with 25 percent treated units, 
i.e. the bias is closest to zero, but is biased with a lower share of treated and has the highest 
variance in every scenario. 

Columns (4) and (5) report the share of observations remaining in common support (CS), overall, 
as well as for treated only. Here we find the Probit and the Random Forest to have the lowest 
overlap in Panel A, as well as, but less extreme, in Panel B. Less severely, this is also observed in 
Panels C and D in the simulation with more observations. No huge support problems are observed 
for the LASSO, as well as the true and the random PS. 

6 Empirical application 
We evaluate the effect of participating in the training programme, “Determining, Reducing and 
Removing Employment Impediments”, using the full sample of 14,817 treated and 261,820 control 
units as described in Section 3. The ATET is estimated using the three PS methods, i.e. Random 
Forest, LASSO and Probit, in the RMBA estimator. The results can be found in Table 7. 

                                                                    
score to predict the bias of causal estimators well, there are two other reasons why one should not take balancing measures too 
serious (compare Ho et al., 2007). 1.) The SB only looks at balancing of variables in their baseline form. A good SB might 
therefore be necessary, but not sufficient for a low bias in the matching step. 2.) There is no distinction between the strength of 
the confounders. While for the first issue there is up to our knowledge no credible solution proposed in the literature, as the 
true confounding is unknown. To oppose this second issue we only look at the ten most important confounders determined as 
those variables selected in both LASSO procedures, Y on X and D on X, in the full dataset. 
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Table 7: Empirical Treatment Effect Estimation, Matching 
Propensity score method 
used 

Treatment Effect Standard error P-value SB Common Support 

Probit 26.59 4.34 0.00 0.89 99.9% 

LASSO 27.92 2.00 0.00 2.07 99.9% 

Random Forest 36.62 3.13 0.00 6.62 99.0% 

Notes: Average treatment effect on the treated. N = 276,637. The outcome is days in employment in the three years after 
treatment. Inference based on bootstrapping (299 replications) p-values. SB is the absolute mean standardized bias in 
covariate balancing of the ten most important confounders. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 

Although LASSO (and Probit) performed well in our simulation exercise as PS estimation technique 
for 16,000 observations, this gives us only little indication how this performance translates into 
this larger sample. Having an even lower treatment share as in the simulations of about five 
percent, but a larger sample, the expected performance of the Random Forest is unclear.27 

We find that participation in the investigated training programme leads to about 27 days more in 
employment compared to not being assigned to the programme. The effect estimated using the 
Probit PS, with 26.6 days and the effect using the LASSO PS, with 27.9 days, are roughly equal. The 
estimates using the Random Forest for estimating the PS suggest an effect of about 36.6 days, 
which is compared to the LASSO estimate around 30 percent higher. Worth noting is the fact that 
the estimated standard error is remarkably lower if the PS is estimated using LASSO compared to 
the other methods. The common support and the SB for all the methods is found to be similar to 
the findings in the simulation.  

                                                                    
27 In Appendix B.4, we show the distributions of the PS are very similar for the Probit and the LASSO, while the Random Forest 
estimates a slightly narrower distribution. 
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Table 8: Covariate balancing in application 
  Before 

Matching 
Probit Random Forest LASSO 

Female -2.50 0.20 0.20 0.60 

Age -22.13 1.69 -7.41 2.35 

Receives some income from employment 22.60 0.40 -4.10 0.10 

Cumulated number of days in welfare receipt in year 
before 

-13.35 0.66 -5.32 0.46 

Participated in Schemes by Providers 7.50 0.20 -2.50 -0.50 

Participated in classroom training 15.30 -0.30 -5.30 -1.70 

Job centre district: Inflow into Schemes by Providers 
relative to jobseeker stock in 2009q4 

48.54 1.01 -15.03 -4.89 

Job centre district: Inflow into In-Firm Training 
relative to jobseeker stock in 2009q4 

19.75 -0.32 -1.12 -4.00 

Days since last employment -13.63 -1.68 -3.61 0.39 

Cumulated days in regular employment in last five 
years 

12.89 -0.99 3.88 -2.14 

Notes: Covariate balancing after matching in the application using the three different PS estimation methods. N=276,673. Mean 
bias in percent for binary, standardized bias in percent for non-binary variables. The variables female, receives some income 
from employment, participated in Schemes by Providers, and participated in classroom training represent binary variables. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 

In Table 8, we provide the covariate balancing statistics for the ten most important confounders. 
While the Probit is balancing every covariate well, the Random Forest PS shows deficits in 
balancing some of the, especially non-binary, variables.28 In conclusion, the choice of the first 
stage estimator does matter in practical research and choosing a non-appropriate method could 
lead to wrong policy conclusions. 

7 Conclusion 

In this work, we investigated through simulations and an application whether predicting the PS by 
machine learning methods helps to increase credibility of programme evaluation studies based on 
propensity score matching. Having an arguably realistic DGP using a rich, high-dimensional 
administrative dataset for German long-term unemployed, we simulated the finite sample 
performance of various PS estimation techniques in a matching-type estimator estimating the 
ATET. We considered two very different methods from the machine learning literature, namely the 
Random Forest and the LASSO. We compared their performance to a “classical” Probit approach 
with an ad-hoc specification of covariates, as well as to the true and a randomized PS. 

While the choice of “first-stage” estimator is highly relevant for settings with a low number of 
observations and few treated, the methods become more similar in terms of performance with 
more observations and/or more treated units. We find that LASSO is doing especially well, being 
close or even better than using true PS in matching. Our evidence suggest the usage of Random 
Forest for this purpose might lead to misleading results, especially if the share of treated is low, 

                                                                    
28 To balance non-binary variables trees potentially need more splits compared to binary variables. Having a low share of 
treated the single trees might not be able to split deep enough to balance especially non-binary variables. 
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and using it in similar setups has to be considered with caution. This could be the case because in 
these situations the Random Forest is not able to split deep enough to balance the covariates 
properly. The target of the PS in matching is to balance confounding factors to obtain a quasi-
random situation. Therefore, the Random Forest was not able to replicate the spread of the PS, 
which led to comparing control units to treated units, which were potentially not sufficiently 
similar in terms of confounding influences. Also, if the tree structures are not able to split deep 
enough they cannot estimate the tails well. Athey and Imbens (2019) point out the fact that forests 
are likely to have bias in the tails, because the single trees cannot centre their leaves near the 
boundary. This might be more pronounced the lower the treatment share. Further research would 
be helpful to understand this phenomenon in our context more deeply. 

In our application we see this sensitivity again: LASSO and Probit as PS estimator used in radius 
matching lead to similar point estimates, but with lower variance for the LASSO. The estimator 
based on a Random Forest estimated PS shows a substantial deviation in the magnitude of the 
effect compared to the other methods. 

The conclusion of these exercises is that estimating the propensity score by machine learning is 
not clearly beneficial compared to current conventional matching methods. Instead, the methods 
of the new causal machine literature that are directly optimized for treatment effect estimation 
may be a more promising alternative, although this is beyond the scope of this paper (see Knaus, 
Lechner, and Strittmatter, 2018, and Lechner, 2018, for various proposals and comparisons). 

Of course, as the machine learning methods rely on different tuning parameters, more tailored 
implementations might improve the performance and reliability. Despite relying on a realistic 
DGP, it remains unclear if the results hold for studies outside the labour market context and further 
research might be useful here, especially considering the case of low (high) shares of treated units. 
Further, recent developments in the literature of doubly robust alternatives (compare e.g. 
Antonelli et al., 2018, Chernozhukov et al., 2018) might be helpful for increasing the credibility of 
empirical researches. 
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Appendix  

Appendix A: Full result tables 
In this Appendix, we show the full results tables of the EMCS presented in Section 5. The following 
four subsections refer to the four simulation scenarios. Summaries of those tables are found in the 
text. 

A.1 Scenario A: N = 4,000, 10% treated 

Table A.1.1: Simulation results for N=4,000 and ~10% share of treated  
Measures Probit Probit (conv.) Random  

Forest 
LASSO True Random 

Treatment effects 

Mean treatment effect / bias 21.95 16.60 -26.15 5.03 -0.39 20.47 

Mean SE of matching1) 19.65 21.76 31.03 20.07 20.17 19.41 

MAD 25.11 21.44 36.12 15.91 14.83 23.12 

MSE 885.52 706.23 2,258.05 398.29 341.25 773.07 

SE 20.09 20.75 39.68 19.31 18.47 18.81 

Variance 403.54 430.75 1574.16 372.94 341.10 353.89 

Skewness -0.27 0.002 -0.78 -0.16 -0.02 0.08 

Kurtosis 3.05 2.98 4.75 2.95 2.77 3.32 

Common support 

Mean share remaining in CS 0.93 0.91 0.57 0.98 0.98 0.99 

Mean share treated remaining 
in CS 

0.65 0.99 0.90 0.99 0.99 0.99 

Balancing of covariates as standardized differences 

Mean abs. stand. mean bias 8.20 3.74 28.18 5.49 5.33 16.34 

Mean abs. stand. max. bias 19.14 8.65 106.29 12.47 12.51 37.54 

Sample size 4,000 4,000 4,000 4,000 4,000 4,000 

Replications 1,000 653 1,000 1,000 1,000 1,000 

Share of treated 0.0993 0.0935 0.0993 0.0993 0.0993 0.0993 

Notes: SE: standard error. CS stands for common support. In column 2, only those repetitions are taken into account in which 
the Probit was able to converge correctly. Balancing of covariates according to the ten most important confounders, 
determined as those variables selected in both LASSO procedures, Y on X and D on X, in the full dataset. 1)estimated as weight-
based variance as described in Huber, Lechner, and Steinmayr (2015). 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 
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Table A.1.2: Propensity score estimation results for N=4,000 and ~10% share of treated 
Measure Probit Probit (conv.) Random Forest LASSO Random  

 

Mean correlation 0.36 0.56 0.70 0.75 0.00 

Mean Kendall’s Tau 0.26 0.39 0.53 0.58 0.00 

Mean Spearman Rank 0.36 0.56 0.72 0.77 0.00 

Sample size 4,000 4,000 4,000 4,000 4,000 

Replications 1,000 653 1,000 1,000 1,000 

Share of treated 0.0993 0.0935 0.0993 0.0993 0.0993 

Notes: In column 2, only those repetitions are taken into account in which the Probit was able to converge correctly. The 
formulas for Kendall’s Tau and the Spearman Rank Correlation can be found in the main text. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 

A.2 Scenario B: N = 4,000, 25% treated 

Table A.2.1: Simulation results for N=4,000 and ~25% share of treated 
Measures Probit Probit 

(conv.) 
Random  

Forest 
LASSO True Random 

Treatment effects 

Mean treatment effect / bias 11.68 11.27 -2.18 3.63 -0.32 24.29 

Mean SE of matching1) 14.51 14.66 16.63 14.84 15.02 13.10 

MAD 14.52 14.22 13.14 11.50 12.10 24.63 

MSE 310.55 299.99 275.33 213.92 226.28 762.48 

SE 13.19 13.15 16.45 14.17 15.04 13.15 

Variance 174.05 172.99 270.57 200.73 226.18 172.80 

Skewness -0.08 -0.05 -0.07 -0.17 0.009 0.002 

Kurtosis 3.17 3.21 3.03 3.37 2.89 2.87 

Common support 

Mean share remaining in CS 0.98 0.98 0.94 0.99 0.99 0.99 

Mean share treated remaining in CS 0.96 0.99 0.97 0.99 0.99 0.99 

Balancing of covariates as standardized differences 

Mean abs. stand. mean bias 3.13 2.66 9.41 4.03 4.06 19.46 

Mean abs. stand. max. bias 7.90 6.36 31.75 10.07 9.73 46.47 

Sample size 4,000 4,000 4,000 4,000 4,000 4,000 

Replications 1,000 961 1,000 1,000 1,000 1,000 

Share of treated 0.2493 0.2485 0.2493 0.2493 0.2493 0.2493 

Notes: SE: standard error. CS stands for common support. In column 2, only those repetitions are taken into account in which 
the Probit was able to converge correctly. Balancing of covariates according to the ten most important confounders, 
determined as those variables selected in both LASSO procedures, Y on X and D on X, in the full dataset. 1)estimated as weight-
based variance as described in Huber, Lechner, and Steinmayr (2015). 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 
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Table A.2.2: Propensity score estimation results for N=4,000 and ~25% share of treated 
Measure Probit Probit (conv.) Random Forest LASSO Random 

Mean correlation 0.61 0.64 0.80 0.86 0.00 

Mean Kendall’s Tau 0.43 0.44 0.62 0.67 0.00 

Mean Spearman Rank 0.60 0.62 0.82 0.86 0.00 

Sample size 4,000 4,000 4,000 4,000 4,000 

Replications 1,000 961 1,000 1,000 1,000 

Share of treated 0.2493 0.2485 0.2493 0.2493 0.2493 

Notes: In column 2, only those repetitions are taken into account in which the Probit was able to converge correctly. The 
formulas for Kendall’s Tau and the Spearman Rank Correlation can be found in the main text. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 

A.3 Scenario C: N = 16,000, 10% treated 

Table A.3.1: Simulation results for N=16,000 and ~10% share of treated 
Measures Probit Random Forest LASSO True Random 

Treatment effects 

Mean treatment effect / bias 1.56 -12.40 1.40 -0.19 20.63 

Mean SE of matching1) 9.98 13.39 10.04 10.06 9.70 

MAD 8.12 16.82 7.63 7.71 20.63 

MSE 109.86 440.31 86.05 95.90 507.72 

SE 10.37 16.93 9.17 9.79 9.07 

Variance 107.45 286.46 84.08 95.86 82.22 

Skewness 0.48 -0.24 -0.03 0.07 0.17 

Kurtosis 3.65 3.50 2.49 2.97 2.67 

Common support 

Mean share remaining in CS 0.99 0.75 0.99 0.99 0.99 

Mean share treated 
remaining in CS 

0.95 0.97 0.99 0.99 0.99 

Balancing of covariates as standardized differences 

Mean abs. stand. mean bias 2.47 17.89 2.67 2.70 16.09 

Mean abs. stand. maximum 
bias 

5.80 71.11 6.70 6.33 37.62 

Sample size: 16,000 

Replications: 250 

Mean share of treated: 0.0997 

Notes: SE: standard error. CS stands for common support. Balancing of covariates according to the ten most important 
confounders, determined as those variables selected in both LASSO procedures, Y on X and D on X, in the full dataset. 1) 
estimated as weight-based variance as described in Huber, Lechner, and Steinmayr (2015). 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 
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Table A.3.2: Propensity score estimation results for N=16,000 and ~10% share of treated 
Measure Probit Random Forest LASSO Random 

Mean correlation 0.73 0.79 0.86 0.00 

Mean Kendall’s Tau 0.54 0.62 0.68 0.00 

Mean Spearman Rank 0.73 0.81 0.87 0.00 

Sample size: 16,000 

Replications: 250 

Mean share of treated: 0.10 

Notes: The formulas for Kendall’s Tau and the Spearman Rank Correlation can be found in the main text. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 

A.4 Scenario D: N = 16,000, 25% treated 

Table A.4.1: Simulation results for N=16,000 and ~25% share of treated 
Measures Probit Random Forest LASSO True Random 
Treatment effects 
Mean treatment effect / bias 2.63 1.10 1.15 -0.72 24.52 
Mean SE of matching1) 7.37 8.59 7.53 7.59 6.55 
MAD 5.55 6.76 5.14 5.80 24.52 
MSE 49.80 72.73 42.34 53.62 641.45 
SE 6.55 8.46 6.41 7.29 6.36 
Variance 42.87 71.50 41.03 53.10 40.42 
Skewness 0.28 0.01 -0.21 0.03 0.29 
Kurtosis 4.18 2.98 3.37 3.31 2.86 
Common support 
Mean share remaining in CS 0.99 0.95 0.99 0.99 0.99 
Mean share treated 
remaining in CS 

0.99 0.99 0.99 0.99 0.99 

Balancing of covariates as standardized differences 
Mean abs. stand. mean bias 1.56 8.50 2.19 2.04 19.39 
Mean abs. stand. maximum 
bias 

3.70 27.94 6.14 4.78 46.35 

Sample size: 16,000 
Replications: 250 
Mean share of treated: 0.25 

Notes: SE means standard error. CS stands for common support. Balancing of covariates according to the ten most important 
confounders, determined as those variables selected in both LASSO procedures, Y on X and D on X, in the full dataset. 1) 
estimated as weight-based variance as described in Huber, Lechner, and Steinmayr (2015). 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 
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Table A.4.2: Propensity score estimation results for N=16,000 and ~25% share of treated 
Measure Probit Random Forest LASSO Random 

Mean correlation 0.86 0.86 0.92 0.00 

Mean Kendall’s Tau 0.69 0.67 0.76 0.00 

Mean Spearman Rank 0.87 0.86 0.92 0.00 

Sample size: 16,000 

Replications: 250 

Mean share of treated: 0.25 

Notes: The formulas for Kendall’s Tau and the Spearman Rank Correlation can be found in the main text. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 

Appendix B: Estimated propensity score by treatment status 
The distributions of the same one PS estimation for each scenario from the EMCS in Section 5 is 
presented in the appendices B.1 – B.3.  Scenario A can be found in the main text. The distribution 
of the PS of the Probit, Random Forest and LASSO from the application in Section 6 are depicted 
in B.4.  

B.1 Scenario B: N=4,000, 25% treated 

Figure B.1: Propensity scores by treatment status 

 
Notes: Histograms with PS on the horizontal axis. Top left is the Probit PS, top right Random Forest, bottom left and right the 
LASSO estimated and true PS. Each from the same one simulation with N=4,000 and 25% treatment share. Control units are 
light, treated units dark shaded. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 
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B.2 Scenario C: N=16,000, 10% treated 

Figure B.2: Propensity scores by treatment status 

 
Notes: Histograms with PS on the horizontal axis. Top left is the Probit PS, top right Random Forest, bottom left and right the 
LASSO estimated and true PS. Each from the same one simulation with N=16,000 and 10% treatment share. Control units are 
light, treated units dark shaded. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 
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B.3 Scenario D: N=16,000, 25% treated 

Figure B.3: Propensity scores by treatment status 

 
Notes: Histograms with PS on the horizontal axis. Top left is the Probit PS, top right Random Forest, bottom left and right the 
LASSO estimated and true PS. Each from the same one simulation with N=16,000 and 25% treatment share. Control units are 
light, treated units dark shaded. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 
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B.4 Application 

Figure B.4.1: Propensity score by treatment status, Probit 

 
Notes: Histogram with PS on the horizontal axis estimated using the Probit. From the application in Section 6 with N=276,637 
and about 5% treatment share. Control units are light, treated units dark shaded. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 

Figure B.4.2: Propensity score by treatment status, Random Forest 

 
Notes: Histogram with PS on the horizontal axis estimated using the Random Forest. From the application in Section 6 with 
N=276,637 and about 5% treatment share. Control units are light, treated units dark shaded. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 
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Figure B.4.3: Propensity score by treatment status, LASSO 

 
Notes: Histogram with PS on the horizontal axis estimated using the LASSO. From the application in Section 6 with N=276,637 
and about 5% treatment share. Control units are light, treated units dark shaded. 
Sources: Integrated Employment Biographies and other administrative datasets available at the Institute for Employment 
Research, regional data of the Statistics Department of the German Federal Employment Agency, own calculations. 
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