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Abstract

This paper investigates the role of mismatch between job seekers and job openings for

the forecasting performance of a labor market matching function. In theory, higher mis-

match lowers matching efficiency which increases the risk that the vacancies cannot be

filled within the usual period of time. We investigate whether and to what extent forecasts

of German job findings can be improved by a mismatch-enhanced labor market match-

ing function. For this purpose, we construct so-called mismatch indicators that reflect re-

gional, occupational and qualification-related mismatch on a monthly basis. In pseudo

out-of-sample tests that account for the nested model environment, we find that forecast-

ing models enhanced by the mismatch indicator significantly outperform their benchmark

counterparts for all forecast horizons ranging between one month and a year. This is espe-

cially pronounced in the aftermath of the Great Recession where a low level of mismatch

improved the possibility of unemployed to find a job again.

Zusammenfassung

Die Arbeit untersucht die Rolle von fehlender Passung (Mismatch) zwischen Arbeitslo-

sen und offenen Stellen hinsichtlich der Prognosegüte der Matching-Funktion. Theoretisch

sinkt die Matchingeffizienz mit höherem Mismatch, wodurch das Risiko steigt, dass die Va-

kanzen nicht innerhalb der normalen Zeit besetzt werden können. Wir untersuchen, ob und

in welchem Umfang sich Vorhersagen von Abgängen aus Arbeitslosigkeit in Beschäftigung

in Deutschland durch eine Matchingfunktion verbessern lassen, die die qualitative Passung

von Angebot und Nachfrage berücksichtigt und somit über eine rein quantitative Betrach-

tung hinausgeht. Dazu konstruieren wir Mismatch-Indikatoren, die monatlich das Ausmaß

von regionalen, beruflichen und qualifikatorischen Missverhältnissen zwischen Arbeitslo-

sen und Vakanzen messen. Um die Prognosegüte dieses erweiterten Modells mit der des

entsprechenden einfachen Stock-flow-Matchingmodells zu vergleichen, ziehen wir Out-of-

Sample Evaluationstests heran, die für genestete Modelle geeignet sind. Die Ergebnisse

zeigen, dass Modelle mit dem Mismatch-Indikator für alle untersuchten Prognosehorizonte

(1 Monat bis 1 Jahr) signifikant besser abschneiden als die entsprechenden Benchmark-

modelle. Verbesserungspotenzial hinsichtlich der Prognosegüte zeigt sich vor allem für

die Zeit nach der großen Finanz- und Wirtschaftskrise von 2008/2009, in der ein niedri-

ges Mismatch-Level die Chancen für die Arbeitslosen erhöhte, wieder in Beschäftigung zu

kommen.

JEL classification: C22, C52, C53, C78, E24, E27

Keywords: matching function, mismatch indicators, forecast evaluation
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1 Introduction

Many approaches for relating unemployment and vacancies to job findings rely on matching

theory (see e.g. Mortensen and Pissarides (1994) and Petrongolo and Pissarides (2001))

and thus consider vacancies and unemployed as inputs into the production function of job

findings. Most studies, however, assume the efficiency parameter to be constant over time.

Only in recent years this strong assumption has been called into question. Barnichon and

Figura (2011) or Sedlacek (2011) and Klinger and Weber (2014) for instance allow for

time-varying matching efficiency.

We contribute to the literature by applying the concept of a time-varying efficiency parame-

ter from a forecasting perspective. Particularly, we allow matching efficiency to depend on

structural imbalance between the supply and demand side of the labor market. Employing

a mismatch index in forecasting regressions is an economically attractive way of modeling

structural change in the relationship between unemployment, vacancies and job findings.

The underlying data from the statistics department of the Federal Employment Agency

(FEA) allow for disaggregation of unemployed and registered vacancies at the levels of 21

occupational segments, 50 labor market regions and 3 qualification groups. This way we

get detailed empirical evidence on the size and development of mismatch in Germany in

the past 13 years, including the years after the Hartz labor market reforms.

The focus is on discrepancies in all 21x50x3 markets due to occupational, regional and

qualification-related incongruence between the attributes of the unemployed and the de-

mands of the jobs. For this purpose, we construct a mismatch index that captures such

imbalances in addition to the pure quantity of vacancies and unemployed and investigate

whether models enhanced by a mismatch indicator can improve predictive ability.

After log-linearisation of the matching function, the mismatch indicator appears as an addi-

tional regressor in our forecasting equations. As a consequence, the usual out-of-sample

test of Diebold and Mariano (1995) cannot be implemented. We thus employ the nested-

model test described in Clark and West (2007), applying a one-sided test for equal pre-

dictive accuracy with the alternative hypothesis being worse forecast performance of the

nesting model. We find that our enhanced matching function significantly outperforms its

benchmark counterpart without mismatch indicator. Gains in forecast accuracy can be

shown for all forecast horizons ranging between one month and one year. It is especially

pronounced in the aftermath of the Great Recession where a low level of mismatch im-

proved the job chances of the unemployed.

By gradually removing the occupational, regional or qualification-related dimension from

our index calculations we generate alternative indices that allow quantifying the size and

development of the different types of mismatch separately. This way we can identify which

of the aforementioned dimensions has the biggest impact on forecast accuracy. The re-

sults emphasize the positive contribution of the occupational dimension for forecasts in the

range of six to twelve months ahead. For the very short term, however, relying solely on

qualificatory mismatch might be entirely sufficient with respect to forecasting job findings.
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The remainder of the paper is structured as follows: The theoretical background of our

forecasting equations, namely the enhanced stock-flow matching model, is introduced in

the first part of section 2. The second part describes the data used for forecast evalua-

tion and construction of the mismatch indices, and subsection 2.3 briefly describes various

concepts of measuring mismatch and shows the development of the mismatch index fol-

lowing Jackman and Roper (1987). Section 3 compares the forecasting performance of

a mismatch-enhanced labor market matching function to that of the corresponding bench-

mark models using nested model out-of-sample tests. Furthermore, it discusses the ques-

tion which dimensions of mismatch provide the highest value added in forecasting German

hiring figures. The last section concludes.

2 Theory and measurement

2.1 Theoretical background

The well-known search and matching theory (see e.g. Mortensen and Pissarides (1994),

Petrongolo and Pissarides (2001), Shimer (2007) and Yashiv (2007)) states that vacancies

(V ) and unemployed (U ) form matches (H for hirings) through a Cobb-Douglas production

function in the style of equation (1).

Ht = Φ · V α
t−1 · U

β
t−1, (1)

where Φ denotes the efficiency parameter that carries the information about the location of

the Beveridge curve. α and β are the elasticities of new matches with respect to vacancies

and unemployed, respectively.

Based on the idea of Coles and Smith (1998), Ebrahimy and Shimer (2010) augmented

the basic model by the respective flow counterparts of V and U . The idea of the so-called

stock-flow matching model is that job searchers first screen the stock of job openings and

firms first look at the stock of unemployed. Those agents on the demand or supply side who

could not successfully fill the vacancy or find a job are assumed to search among the newly

incoming applicants or job openings only. It can be shown that in a steady state, stock-stock

matches are less likely than stock-flow matches. The stock-flow matching function follows

as:

Ht = Φ · V αst
t−1 · Uβstt−1 · V̇t

αfl · U̇t
βfl
, (2)

where aggregate unemployment and vacancies enter the regression both as stock (U , V )

and as flow (U̇ , V̇ ) variables. The corresponding parameters are indexed by st and fl,

respectively.

However, even in the stock-flow matching model the efficiency parameter is assumed to be

constant over time. This could be problematic since the efficiency parameter is degraded to
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a sort of Solow residual that has to capture any dynamics that cannot be accounted for by

the stocks or flows of unemployment and vacancies. Sedlacek (2011), for instance, finds

that the efficiency parameter can explain about 25 percent of the fluctuations in the job

finding rate. Not accounting for these dynamics could not only lead to biased estimates of

the structural parameters of the matching function but also (negatively) affect the accuracy

in forecasts of hirings.

In the underlying paper, we model Φ to depend on the extent of structural incongruence

between vacancies and unemployed. Structural imbalance occurs when a large number of

unemployed coincides with a small number of vacancies (and vice versa) in a given micro

market. It can lead to long-run unemployment because workers and vacancies would not

form a match even in absence of search frictions or imperfect information. A better con-

gruence of both groups with respect to relevant attributes such as qualification, occupation

and region is expected to influence matching efficiency as expressed in equation (3).

Φt = f(C,MMt−1) = C ·MMγ
t−1, (3)

where MM denotes an aggregate measure of structural imbalance capturing the relevant

dimensions of mismatch, and C other factors that are not modeled here. Hence, γ is

expected to be negative since a higher regional, occupational or qualificatory incongruence

should hamper matching efficiency.

Inserting (3) into (2) yields after log-linearisation:

ht = c+ γ ·mmt−1 + αst · vt−1 + βst · ut−1 + αfl · v̇t + βfl · u̇t, (4)

where lower-case letters denote the natural logarithm. The measure of structural imbalance

MM now appears in additive form which has some implications when it comes to forecast

evaluation (see section 3).

2.2 Data

In order to construct the mismatch indices and to evaluate their value added in out-of-

sample forecasts, we use monthly data from the statistics department of the Federal Em-

ployment Agency (FEA). As target variable we take seasonally adjusted hiring figures on

the aggregate level, i.e the monthly outflow from unemployment into employment on the

primary labor market. Hence, transitions from unemployment into subsidized employment

or into labor-market measures are excluded.

Figure 1 shows the development of the aggregate, seasonally adjusted outflow from un-

employment into employment on the primary labor market, from January 2000 until March

2014. Among the variables on the right-hand-side of our forecast equation are the aggre-

gate number of both the stock and the inflow of unemployed and vacancies, respectively.
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Figure 1: Aggregate number of hirings, seasonally adjusted
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Figure 2: Unemployed and vacancies (stock variables), seasonally adjusted
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Figure 3: Unemployed and vacancies (monthly inflow), seasonally adjusted
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Figure 2 shows the stock of aggregate unemployed and registered vacancies (both sea-

sonally adjusted) as reported by the FEA, from January 2000 until March 2013.1 The latter

variable comprises all job offers that employers report to the respective local agencies and

that are approved for placement.2 Figure 3 shows the aggregate number of the respective

monthly inflows.

Constructing the mismatch indices as described in subsection 2.3 requires detailed in-

formation about the regional, occupational and qualificatory distribution of the respective

job openings and unemployed on a monthly frequency. For this purpose, we exploit a

large data set from the FEA that allows us to account for the most relevant dimensions

of mismatch. With regards to qualification-related incongruence, we distinguish between

the following three groups: experts (people with academic training), skilled workers and

specialists (people with completed educational or vocational training), and helpers (people

without completed vocational training).

Furthermore, we account for regional mismatch by using the 50 labor market regions pro-

posed by Kropp and Schwengler (2014) and shown in figure 4. The delineation of these

functional labor market regions relies on commuter flows between all German municipal-

ities since 1993. Its main advantages are the high stability over time and its excellent

properties with respect to self-supply and commuter ratio. On average, 87.4 percent (stan-

dard deviation: 4.4 percentage points) of the jobs are taken by workers that live within the

1 Our last estimation period ends in March 2013. Our evaluation period for 12-months-ahead forecasts ends
in March 2014. As a consequence, the observation periods shown in figures 2 and 3 differ from that in
figure 1.

2 Consequently, the chosen variable does not cover the whole job market. However, there is no variable
available at a monthly frequency that takes into account the potentially changing share of vacancies that
are registered at the employment agencies.
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Figure 4: Germany’s 50 labor market regions

Notes: The labor market regions (black borderlines) are taken from Kropp and Schwengler (2011) and slightly
modified so that they are in accordance with the most recent county borders (grey borderlines).
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Table 1: The occupational segments

No. occupational segment exemplary occupations

1 Agricultural occupations
farmer, fisher,
gardener, forester

2 Miner/chemical occupations
miner, mining engineer,
chemical worker

3 Glass, ceramic, paper producer
ceramicist, glazier,
paper producer, printer

4 Textile, leather producer
spinner, weaver, tailor,
sewer, shoemaker

5 Metal producer
metal worker, plumber,
mechanical engineer

6 Electricians
electrician,
electrical engineer

7 Wood occupations
wood processor,
woodworker, joiner

8 Construction occupations
bricklayer, carpenter,
roofer, tiler

9 Hotel/restaurant occupations
baker, butcher,
cook, barkeeper

10 Storage/transport occupations
conductor, motorist,
driver, mail distributor

11 Merchandise occupations
merchant, cashier,
accounting clerk, banker

12 White collar worker
accountant, clerk,
member of parliament

13 Security occupations
gate keeper, firefighter,
guard, chimney sweeper

14 Social/care occupations
child teacher, care taker,
social worker

15 Medical occupations
nurse, helper in nursing,
receptionist

16 Physicians
physician, dentist,
veterinarian

17 Teaching professions professor, teacher

18 Artists/Athlets
graphic designer, musician,
professional sportsman

19 Natural scientists
chemist, physicist,
mathematician

20 Humanists
publicist, translator,
librarian, economist

21 Others
laborer without further
specification of activity

Source: Matthes et al. (2008), p.22.
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respective labor market region. This high degree of self-supply emphasizes that the chosen

delineation is highly suitable for identifying distinct regional labor markets in the framework

of the matching theory. In addition, the commuter ratio, i.e the ratio of commuters into and

out of the respective labor market region is 98 percent on average and varies only little

(standard deviation: 5.4 percentage points), especially in case of big labor market regions.

Hence, as a consequence of the chosen delineation method there is no single labor market

region left that could be considered as being a typical in- or out-commuter-region.

The third dimension of incongruence between demand and supply on the labor market is

the occupational mismatch. Similar to the regional delineation described in the previous

paragraph, it is necessary to identify occupational segments that are characterized both

by a high within-homogeneity and by a high across-segregation. We follow Matthes et al.

(2008) and use the 21 occupational segments shown in table 1. A big advantage of using

occupational segments instead of occupations is that the degree of homogeneity varies

less across segments which implies that the segments are better comparable with respect

to the number of job alternatives within a segment. Furthermore, the occupational seg-

ments are characterized by a reasonably high degree of discriminatory power with respect

to realized job mobility. To be more precise, in 95 percent of the segments the number of

occupational changes within the respective segment exceeds the number of occupational

changes that involve other segments.

All necessary data are made available with a very small time lag. This enables us to im-

mediately calculate the monthly value of the mismatch index and to use it in the respective

forecasting equations (as shown in section 3).

2.3 Measuring mismatch

Economists have been interested in measuring mismatch since the advent of the Bev-

eridge curve. However, there is no clear-cut definition of mismatch in the literature. In

fact, the mismatch concept is rather loose and as a consequence, a variety of indices and

interpretations coexist on identical observable facts.3

Early approaches consider mismatch as being only a temporary phenomenon. For in-

stance, the mismatch index developed by Lilien (1982) is based on the assumption that

short-run shocks can lead to a change in the composition of sectoral demand in an econ-

omy. Since labor markets adjust only slowly, mismatch occurs when both unemployment

(in the contracting sectors) and vacancies (in the expanding sectors) temporarily rise to

elevated levels during the period of transition. However, this approach has not been em-

braced too much in studies on European countries where economists have rather been

searching for the causes of a more permanent increase in unemployment.

Another concept (applied by Franz (1991), for instance) considers mismatch as being not

only a temporary phenomenon. It is built upon a disequilibrium model in which the short

3 For an overview of various concepts for measuring mismatch, see e.g. Schioppa (1991) or Canon et al.
(2013).
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side of any distinct labor market determines its level of employment. Under the assumption

that the short side is not the same in all micro markets, unemployment and vacancies

coexist at the aggregate level, which leads to employment being below the minimum of

the aggregate supply and demand. As a consequence, a higher level of mismatch is

attributable to a higher variance between the markets at the micro level.

A main disadvantage of the second approach to mismatch is that it rules out the coexis-

tence of vacancies and unemployed within each micro market (usually called frictional un-

employment). In contrast, however, the approach to mismatch embraced by Jackman and

Roper (1987)4 accepts that frictional unemployment is inevitable within each distinct labor

market. Therefore, incongruence at the micro level is measured relative to a more realistic

(since attainable) size of unemployment. Hence, the respective mismatch index measures

by how much structural unemployment contributes to total unemployment, i.e. "the propor-

tion of unemployment attributable to structural imbalance" (Jackman and Roper (1987),

p.14).5 It is this useful interpretation why we will work with mismatch indices in the style of

Jackman and Roper (1987) in section 3.

To be precise, the mismatch index as proposed by Jackman and Roper (1987) is given by:

MMt = 1 −
I∑
i=1

[
Vit
Vt

· Uit
Ut

]0.5

, (5)

where the indices denote the micro market (i) and the time period (t), respectively.

If the ratio of unemployed equals that of vacancies in all micro markets, MMt becomes

zero which indicates that there is no structural imbalance at all. If for each i, Vit · Uit
equals zero, there is either no vacancy for the unemployed or no unemployed person for

the vacancies in any micro market. As a consequence, MMt becomes one which means

that 100 percent of unemployment is due to structural mismatch.

Figure 5 shows the development of the seasonally adjusted mismatch index covering all

three dimensions of mismatch (I = 3150) since January 2000. Due to missing or unusable

data there is a gap in 2006. Along with this break comes a change in the way the individuals

are classified into the different qualificatory groups so that the level of mismatch before this

break cannot be compared to that after the break. Throughout the forecast evaluation

performed in section 3, we control for this issue by using impulse dummies for all twelve

months of 2006 and a level shift dummy starting in January 2007.

The development of the mismatch indicator is characterized by a relatively strong decline

from about 0.17 in 2000 to roughly 0.13 in 2003, followed by a moderate increase in the

two following years. The second half of our observation period is marked by fairly smooth

up and down movements in the range between 0.10 and 0.14. Hence, approximately 10

4 To be more precise: It is their mismatch index I3 (p.13) we refer to in this paragraph.
5 This interpretation holds under the assumption that the matching technology follows a Cobb-Douglas pro-

duction function with constant returns to scale and equal elasticity of 0.5.
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Figure 5: Development of the mismatch index, seasonally adjusted
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Notes: The mismatch indicator is calculated according to equation (5) with I = 3150. Grey areas denote
periods of recessions.

to 14 percent of unemployment in Germany can be attributed to regional, occupational and

qualification-related mismatch.

It is striking that the development of the mismatch indicator seems to depend – at least to

some extent – on the business cycle. The grey areas in figure 5 denote periods of reces-

sions (identified by negative values of the year-on-year growth rate of the real GDP). We

find that mismatch tends to decline in late stages of expansions and during recessions and

to increase again after recessions. This pattern is especially pronounced in the years im-

mediately before, during, and immediately after the Great Recession of 2008/2009. Given

that structural imbalances on the labor market as measured by the mismatch index nega-

tively affect matching efficiency, our results are in accordance with the findings of Barnichon

and Figura (2011). In their study on the regression residual of the matching function, the

authors find that matching efficiency tends to grow in the later stages of expansions and

during recessions and to decrease in the aftermaths of recessions. In contrast, Sedlacek

(2011) finds that matching efficiency tends to be procyclical which would not conform to

what happened during our observation period. We argue that the way a recession influ-

ences the extent of mismatch is not unambiguous a priori. In principle, any downturn can

lead to an increase in cyclical or structural unemployment, or to a combination of both.

If unemployment increases are solely cyclical it is quite possible that mismatch declines

which raises matching efficiency.

Another advantage of our detailed data set is that we can observe how the different types

of mismatch develop over time and which dimension drives the development of the origi-

nal mismatch indicator covering all three dimensions. For this purpose, we calculate the
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Figure 6: The various dimensions of mismatch
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Notes: The graph shows the seasonally adjusted development of mismatch accounting for occupational (O),
qualificatory (Q), and regional (R) imbalance between unemployed and vacancies, or accounting for any com-
bination of the three dimensions.

mismatch indicator of equation (5) using two or only one instead of three dimensions of

mismatch.

Table 2: The dimensions of mismatch

combination of dimensions no. of micro markets

region x occupation x qualification 3150
region x occupation 1050
region x qualification 150
occupation x qualification 63
region 50
occupation 21
qualification 3

Table 2 shows all seven possible versions of the mismatch indicator together with the size

of the underlying matrices. One can see that the level of disaggregation, i.e. the number of

micro markets taken into account in equation (5), varies from I = 3 to I = 3150. The de-

velopment of the resulting mismatch indices is shown in figure 6. It depicts the seasonally

adjusted development of mismatch accounting for occupational (O), qualificatory (Q), and

regional (R) imbalance between unemployed and vacancies or for any combination of the

IAB-Discussion Paper 16/2014 15



three dimensions. It demonstrates that taking into account an additional factor increases

the value of the respective mismatch index at any point in time.6

The pronounced decline in mismatch in the early part of our observation period is solely

attributable to a decreasing regional mismatch. Even since 2007, regional mismatch has

declined whereas occupational and qualificatory mismatch have increased in tendency.

This development is likely to be the consequence of a longstanding adjustment process

through domestic migration out of structurally disadvantaged regions into prospering re-

gions. Indeed, since German re-unification, and hence during all of our observation period,

the net figures of internal migration have been negative for the eastern part of Germany,

with the lion’s share of internal migrants moving to the southern federal states. Although

this internal migration can help to approximate the shares of vacancies and unemployed

across German labor market regions it does not automatically mitigate the problems of

occupational or qualification-related incongruence.

3 Forecast evaluation

3.1 Forecast evaluation setting

This subsection tests from an out-of-sample perspective the hypothesis of a time vary-

ing efficiency parameter that negatively depends on structural imbalance on the micro la-

bor markets. For this purpose, it compares the forecasting performance of the stock-flow

matching model with constant efficiency parameter (introduced in subsection 2.1) to that of

a model enhanced by MM , the mismatch indicator described in subsection 2.3.

As a consequence, the parsimonious benchmark model is nested in the larger model,

which is of crucial importance in tests of equal predictive accuracy. Clark and West (2007)

argue that the mean squared prediction error (MSPE) of the larger model is upward-biased

due to additional noise stemming from the need to estimate a parameter which – under

the null hypothesis of equal predictive performance – is zero in population7 and which is

correctly set to zero in the parsimonious model. In a sense, the smaller benchmark model

is more efficient and hence benefits from not carrying the burden of estimating the pa-

rameter of a redundant variable to zero. Consequently, usual tests in the style of Diebold

and Mariano (1995) are undersized and have poor power in a nested model environment.

Therefore, we implement the nested-model test described in Clark and West (2007), ap-

plying a one-sided test for equal predictive accuracy with the alternative hypothesis being

worse forecast performance of the nesting model. Since multiperiod-ahead forecast errors

are usually autocorrelated, we use the heteroskedasticity and autocorrelation robust co-

variance estimator proposed in Newey and West (1987) in case of multiple-step forecasts.

Inference based on asymptotic critical values – as proposed in McCracken (2004) or Clark

and McCracken (2001) – might not be appropriate in case of small sample sizes. There-

fore, the fixed regressor bootstrap method proposed in Clark and McCracken (2012a,b) is

6 However, the dynamics do not necessarily add up exactly due to covariance between the three dimensions.
7 For a discussion of the difference between a null hypothesis of equal accuracy in the population vs. finite

sample, see e.g. Clark and McCracken (2009, 2012a).
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implemented. We argue that bootstrapping considerably strengthens the validity of our test

results. Furthermore, horizon-specific sets of critical values are implemented.

For computing multi-step forecasts we use direct, lead time-dependent forecasts. At least

in theory, direct forecasts are more immune to model misspecification than iterated fore-

casts since they use the chosen model only once.8 In applying direct forecasts we avoid

forecasting the mismatch indicator itself and modeling feedback effects to our target vari-

able. Furthermore, the asymptotic theory of the nested model test we use in our application

requires the forecasts to be linear functions of parameters which applies in direct forecasts

but not in iterated approaches. Based on equation (4), the general lead time-dependent

estimation specification for the natural logarithm of aggregate hires9 h follows

(1 − ρ1 · Lf − ρ2 · Lf+1)ht+f = c+ αst · vt + βst · ut + αfl · v̇t + βfl · u̇t
+ γ ·mmt + dummies+ εt+f ,

(6)

with f denoting the forecast horizon, L the lag-operator, and ε the error term. Note that –

in contrast to equation (4) – all variables on the right hand side are observed in t, the time

when the forecast is conducted. We do not index the coefficients by f for simplicity.

We include several shift dummies to capture changes in institutional settings or structural

breaks in our target variable h. In January 2005, for instance, the last stage of the Hartz

labor market reforms came into effect. Along with this step there was a change in the way

the unemployed are counted which lead to a sudden jump in the official unemployment

figures (see figure 2) and, shortly afterwards, in the hiring figures (see figure 1). We find

that a level-shift dummy that is zero before and 1 as from April 2005 is well suited to

control for this issue. Furthermore, we account for the sudden decline in the hiring figures

two years later (see figure 1) by including another level-shift dummy that takes on the

value 1 as from January 2007. Since autoregressive lags are included in equation (6), the

corresponding lags of the two dummy variables are employed, too.

As described in section 2, there is a short period of missing or unusable data with respect

to the mismatch indicator (see figure 5). In case MM is included, we thus employ impulse

dummies for all twelve months of 2006. The level-shift dummy of 2007 described above not

only captures the break in our target variable but also in the mismatch indicator. The last

dummy employed in equation (6) is an impulse dummy for January 2002, a month where it

was necessary to impute the value of MM due to unusable data.

Since we are interested in forecasting the number of hires and not the natural logarithm of

h, we use the exponential to undo the log. In order to avoid a systematic underestimation

8 On the other hand, parameter estimates are more efficient in the iterated approach because it usually
allows eliminating residual autocorrelation. Literature on this topic is ambiguous, ranging from emphasizing
the advantages of direct forecasts (e.g. Klein (1968)) over mixed results (e.g Kang (2003)) to the finding of
an empiric study on 170 U.S. macroeconomic variables that iterated forecasts typically outperform direct
forecasts (Marcellino et al. (2006)).

9 Throughout the evaluation process we target forecasts of aggregate hiring figures (and hence not forecasts
of the job finding rate).
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of the expected value of h due to the nonlinear transformation, we use the adjustment

proposed by Wooldridge (2009):

ĥ = e
σ̂2

2 · e ̂log(h), (7)

where σ̂ is the standard error of our regression stemming from equation (6). Since we

cannot reject the null of h having a log-normal distribution, we can be confident that the

adjustment of equation (7) produces consistent predictions of the number of hirings.

Now we discuss the choice of the underlying parsimonious benchmark model. One could

think of models relying solely on the own past such as AR(p)-models or the random walk

(RW). In their GDP growth application, Clark and West (2007) use an AR(1) with constant

as benchmark model, Clark and McCracken (2009) use models with just a constant in order

to predict stock returns. Sometimes AR models of higher order, determined by in-sample

information criteria, are employed. The Bayesian Information Criterion (BIC) with monthly

hiring data from 2000 to 2007 (and hence excluding data from our evaluation period) gives

evidence for using AR models with order not higher than 2.10 As expected from the very

low persistence in the hirings variable (see figure 1), neither the information criteria nor the

out-of-sample performance improve by forcing ρ(L) to have a unit root (i.e. by modeling

the first difference of hirings).

Our benchmark model does not include the mismatch indicator (γ = 0) and the dummy

variables that are necessary to account for the data limitations inherent to MM (see sub-

section 2.3).11 Since we use the direct approach, the model type changes with forecast

horizon. For instance, the first model becomes an AR(1) for 1-step-ahead forecasts and

an AR(6) without the first five lags for 6-step-ahead forecasts. As any direct f-step-ahead

forecasting equation implies a MA(f-1) error structure, we also considered the respective

ARMA models. However, out-of-sample performance of these models turned out to be

worse than that of their AR counterparts in most cases such that we do not report ARMA

results.

It is not clear a priori how long it takes until changes in the incongruence between the

profiles of supply and demand are fully incorporated in the matching efficiency. This is

why we investigate all forecast horizons ranging from one to twelve months. We divide the

sample into an estimation period which is updated for each iteration, and an evaluation

period. The initial estimation period for 1-step-ahead forecasts ranges from March 2000

to February 2008 (96 observations) using data from January and February 2000 as ini-

tial observations. Our evaluation period ranges from March 2008 to April 2013 in case of

1-step-ahead forecasts and from February 2009 to March 2014 in case of 12-step-ahead

forecasts. As a consequence, the evaluation period consists of 62 forecasts for all fore-

cast horizons. The estimation period is regularly updated by adding the month that has

10 This result remains valid in case data after 2007 are included.
11 We also checked the out-of-sample performance of a benchmark model not including MM itself, but in-

cluding the corresponding dummy variables. However, forecast accuracy turned out to be worse in most
cases.
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become recently available (recursive scheme). Hence, the last estimation period ends in

March 2013 for all forecast horizons. Each time the forecasts are calculated, the respective

forecasting model is re-estimated first. Since we use lead time-dependent forecasts, the

necessary number of initial observations differs across forecast horizons.

3.2 Performance of the standard mismatch indicator

This subsection treats the performance of the standard mismatch indicator (I = 3150) in

forecasting hirings. Table 3 shows the test results for the 1-, 2-, 6- and 12-step-ahead

forecasts, respectively. The first column displays the forecast horizon. The second column

shows the mean squared prediction errors (MSPEs) of the benchmark stock-flow match-

ing model, whereas the third column displays the MSPEs of the alternative larger model

enhanced by the mismatch indicator. In all cases, the MSPE of the benchmark model

exceeds that of the larger model. Adjusted for the upward bias (fourth column), all re-

ported test statistics are significantly positive at least at the 5 percent level. Hence, the

test results show that the null hypothesis of equal predictive accuracy can be rejected and

that models enhanced by the mismatch indicator outperform their benchmark counterparts.

This supports our hypothesis that – from an out-of-sample perspective – models based on

stock-flow matching can be improved even further by allowing for a time varying efficiency

parameter and by enhancing them by an appropriate measure of structural imbalance on

the micro labor markets. This potential for an improvement in forecast accuracy is verified

for all investigated forecast horizons between 1 and 12 months.

Table 3: Evaluation of monthly forecasts of hirings

forecast horizon MSPE1 MSPE2 adj. term ∆MSPEadj
(test statistic)

1 month 204.6 174.7 14.1
43.9

(3.28)***

2 months 221.1 196.6 17.3
41.8

(1.65)**

6 months 254.2 141.9 126.0
238.4

(2.58)**

12 months 545.6 516.0 182.0
211.7

(1.80)**

Notes: MSPE1 is the out-of-sample MSPE of the parsimonious benchmark
model. MSPE2 is the out-of-sample MSPE of the alternative larger model
including the lagged mismatch indicator. adj. term is the adjustment term ac-
cording to Clark and West (2007). ∆MSPEadj presents a point estimate of the
adjusted difference in MSPEs with the respective test statistic in parentheses.
All figures (except test statistics) are to be multiplied by 106. *, **, *** denote
significance at the 10, 5, 1 percent level, respectively. Critical values are cal-
culated following the fixed regressor bootstrap procedure proposed in Clark and
McCracken (2012b) using 9,999 replications. The heteroskedasticity and au-
tocorrelation robust covariance estimator proposed in Newey and West (1987)
was used in case of multiple-step forecasts.

These findings are also supported by the respective in-sample results. For all forecasting

horizons, we find γ to be negative and highly significant. The total effect of mismatch
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Figure 7: Comparison of 6-months-ahead forecasts over time
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on hirings estimated from equation (6) amounts to −0.458 in case of f = 112, which

supports our hypothesis that structural incongruence negatively affects matching efficiency

and hence hampers job findings.

A further interesting aspect of the out-of-sample performance of our model based on an

enhanced labor market matching function can be uncovered by comparing the forecasts of

the benchmark model to that of the enhanced model over time. This is especially important

since parts of the evaluation period coincide with the Great Recession of 2008/2009 and

forecasts on the German labor market became very difficult due to its astounding resilience

and robustness.

Figure 7 compares the 6-months-ahead forecasts stemming from the parsimonious bench-

mark model to those based on our enhanced labor market matching function over time.

The evaluation period starts in August 2008 and ends in September 2013. It is striking that

the larger model performs best relative to the smaller model in later stages and in the after-

math of the Great Recession. Keeping in mind that all forecasts are based on data that had

been available six months earlier, we conclude that the relatively low levels of mismatch in

2009 and 2010 helped to predict the subsequent upswing in the hiring figures especially

well. The smaller benchmark model by contrast was not able to signal the remarkable

upswing in the hiring figures.

We argue that one reason for the relatively low levels of mismatch in the late stages of

12 The results do not differ substantially for other forecast horizons.
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the Great Recession was an inflow into the pool of job searchers due to cyclical, not struc-

tural, reasons. The additional unemployment was not due to mismatch problems and thus

laid the foundation for a rather quick and strong upswing. Figure 6 clarifies that it was

mainly the occupational dimension that was responsible for the strong decline in structural

imbalance at that time. This is in accordance with the finding that the enormous financial

and economic crisis hit some sectors (and hence occupations), e.g. the export-dependent

sectors in the southern and western parts of Germany, more than others.13 As a conse-

quence, the additional unemployed were exactly those needed to match the vacancies for

the subsequent upswing.

To gain further intuition for the mismatch indicator, we shed light on the roles of the supply

and the demand side. While mismatch could be driven by migrations on the supply side,

also the composition of vacancies could have changed and hence contributed to the rather

low level of mismatch at the end of the Great Recession. One approach to investigate which

side of the labor market drives the dynamics of the mismatch indicator is to alternately hold

constant one side and allow the other side to change in time.

Therefore, we define fictitious mismatch indices as follows:

MM Ū
t = 1 −

I∑
i=1

[
Vit
Vt

· Ūi
Ut

]0.5

(8)

MM V̄
t = 1 −

I∑
i=1

[
V̄i
Vt

· Uit
Ut

]0.5

, (9)

where Ūi and V̄i are the average numbers of unemployed and vacancies in micro market

i, respectively. As a consequence, MM Ū
t is the index that holds constant the supply side

while MM V̄
t holds constant the demand side and allows unemployment to change in time.

Figure 8 shows the development of the original mismatch indicator MM (blue line) since

200714 together with the two fictitious mismatch indicators. The red line shows the mis-

match indicator freezing the distribution of unemployed at its average level according to

equation (8). In contrast, the green line shows the analogous development holding con-

stant the distribution of vacancies and hence allowing the distribution of unemployed to

change (equation (9)).

Although both sides of the labor market contribute to the dynamics of structural imbalance,

the changing distribution of the unemployed obviously dominated the development of mis-

match in the last couple of years. This finding is supported by a remarkably high correlation

between MM V̄ and MM of 0.910 whereas the correlation between MM Ū and MM is

only 0.719. This finding supports our reasoning that during the relevant evaluation period

13 And since the sectors and occupations are not equally distributed across the German regions, the regional
component of mismatch was also affected to a certain extent, which can be seen in figure 6 as well.

14 This period covers all values after the phase of missing data in 2006.
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Figure 8: The mismatch indicators with constant supply or demand side
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Notes: The graph shows the original mismatch indicator (blue line) and the notional mismatch indicators
freezing the distribution of unemployed (red line) or vacancies (green line) at its average level.

the mismatch indicator was primarily driven by changes in the distribution of the unem-

ployed, especially with respect to occupational imbalance, and that mismatch fell due to

cyclical unemployment.

Furthermore, the results shed some light on the German job miracle: Not only did the

firms make use of short-time work, hoarding and flexible working time. In addition, the fit

of the stock of unemployed to the demand side of the labor market was improved. This

might explain why the German labor market could regain its positive pre-crisis dynamics in

the years 2010 and 2011, a period where a lowering speed due to the phasing-out of the

Hartz-reform effects was already expected.

3.3 The importance of the different dimensions of mismatch

The mismatch indicator accounting for all three dimensions of mismatch (I = 3150) ob-

viously provides the most completive picture of structural imbalance given the available

data set. However, this does not necessarily mean that it performs best in out-of-sample

forecasts. In theory, including an additional dimension can add valuable information or

improve the lead-time properties of the respective measures of mismatch. However, it can

also add nonessential information and hence lead to worse predictions of hirings. There-

fore, this subsection investigates whether ignoring certain dimension harms or improves

predictability of hirings, and if so at which forecast horizons this is the case.
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Table 4: Forecast evaluation using different dimensions of mismatch

dimensions
forecast horizon

f=1 f=2 f=6 f=12

O x Q

MSPE2 178.9 199.4 176.3 385.3
adj. term 22.7 26.6 44.3 85.8

∆MSPEadj 48.4 48.3 122.3 246.1
test statistic 2.94 *** 2.26 ** 3.53 *** 3.47 ***

O x R

MSPE2 185.1 209.6 183.7 580.7
adj. term 7.7 14.2 91.1 263.0

∆MSPEadj 27.2 25.7 161.6 227.9
test statistic 2.62 *** 1.22 * 2.17 ** 1.33 *

Q x R

MSPE2 173.1 197.6 203.5 702.6
adj. term 16.0 28.6 150.2 169.9

∆MSPEadj 47.5 52.2 200.9 12.6
test statistic 2.75 *** 1.33 * 2.10 ** 0.14

O

MSPE2 188.6 215.2 198.2 395.9
adj. term 10.9 15.7 30.0 73.1

∆MSPEadj 26.9 21.6 82.0 222.8
test statistic 2.68 *** 1.38 * 2.41 ** 2.59 ***

Q

MSPE2 168.1 185.4 235.5 560.0
adj. term 17.1 24.1 9.3 27.8

∆MSPEadj 53.6 59.8 28.0 13.4
test statistic 3.40 *** 2.45 ** 2.31 ** 0.25

R

MSPE2 192.2 216.6 243.3 784.5
adj. term 6.9 16.4 145.2 327.1

∆MSPEadj 19.2 20.9 156.1 88.2
test statistic 1.78 ** 0.91 1.86 ** 0.49

Notes: The table shows the results of the forecast evaluation test following Clark and West
(2007). The implemented mismatch indicators account for occupational (O), qualificatory (Q)
or regional (R) imbalance between unemployed and vacancies, or for any combination of the
three dimensions. MSPE2 is the out-of-sample MSPE of the enhanced model including the
mismatch indicator. adj. term is the adjustment term according to Clark and West (2007).
∆MSPEadj presents a point estimate of the adjusted difference in MSPEs. All figures (ex-
cept test statistics) are to be multiplied by 106. *, **, *** denote significance at the 10, 5, 1
percent level, respectively. Critical values are calculated following the fixed regressor boot-
strap procedure proposed in Clark and McCracken (2012b) using 9,999 replications. The het-
eroskedasticity and autocorrelation robust covariance estimator proposed in Newey and West
(1987) was used in case of multiple-step forecasts.
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Similar to table 3, table 4 shows the results of the forecast evaluation test following Clark

and West (2007) for all investigated forecast horizons. Instead of using the mismatch

indicator that accounts for all three dimensions of structural imbalance, two or even only

one dimension is accounted for. We find that the mismatch indicator solely considering

regional incongruence (I = 50) performs worst for all forecast horizons. This could be a

consequence of the longtime loss of importance of the regional dimension.15

For the very near future, i.e. in case of 1- or 2-step-ahead forecasts, the indicator covering

qualificatory mismatch performs best as it leads to the lowestMSPEs and the highest test

statistics. This result is rather astounding since the qualificatory approach separates the

German labor market into three distinct micro markets only (see table 2).

For the more distant future, i.e. in case of forecasts 6 or even 12 months ahead, incorpo-

rating occupational mismatch as an additional factor seems to pay off as the combination

of occupational and qualification-related mismatch produces the lowest MSPEs and the

highest test statistics. Only in case of f = 6, the mismatch indicator covering all three

dimensions (see table 3) produces a lower MSPE of 141.9 ∗ 106 although the respective

test statistic is lower than in the case of the OxQ-combination.

To conclude, the results in this subsection emphasize the positive contribution of the oc-

cupational dimension for forecasts in the range of six to twelve months ahead. However,

they also show that for the very short term, relying solely on qualificatory mismatch might

be best with respect to forecasting.

4 Conclusion

This paper aimed at enhancing a basic stock-flow matching function by an appropriate

measure of structural imbalance between the demand and supply side of micro labor mar-

kets. It investigated whether and to what extent the enhanced model performs better in

out-of-sample forecasts of hirings.

For this purpose, we loosen the assumption of a constant efficiency parameter and allow

matching efficiency to depend on the level of regional, qualificatory and occupational mis-

match between unemployed and vacancies. In a sense, we go beyond the purely quantita-

tive view of considering the plain number of vacancies and unemployed in our forecasting

equations and add a qualitative perspective of how well the two groups match with respect

to relevant categories.

Our data set reveals detailed empirical evidence on the size and development of mismatch

in Germany in the past 13 years, including the years after the Hartz labor market reforms.

We find a pronounced decline in regional mismatch, especially in the early part of our

observation period. In contrast, both occupational and qualificatory mismatch have shown

an increasing tendency.

15 We also checked whether including a time trend in equation (6) improves forecast accuracy. We find that
this is only the case if the regional dimension is considered in MM , and then only for forecasts of the more
distant future, i.e. in case of f = 6 and f = 12.
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In pseudo out-of-sample tests that account for the nested model environment, we find

that forecasting models enhanced by the mismatch indicator outperform their benchmark

counterparts without indicator. This supports our hypothesis that – from an out-of-sample

perspective – models based on stock-flow matching can be improved by allowing for a time

varying efficiency parameter and based on a measure of structural imbalance on the micro

labor markets. This potential for an improvement in forecast accuracy is verified for all

invested forecast horizons between 1 and 12 months. It is especially pronounced in the

aftermath of the Great Recession where a low level of mismatch improved the possibility of

unemployed to find a job again.

Furthermore, we find that – although both sides of the labor market contribute to the dy-

namics of structural imbalance – the changing distribution of the unemployed dominated

the development of mismatch in the last couple of years. This supports our reasoning that

mismatch fell due to cyclical unemployment, i.e. that the persons becoming unemployed

during the Great Recession were mostly those needed to match the demand side for the

subsequent upswing. This might explain why unemployment could regain its strong pre-

crisis dynamics in the years 2010 and 2011, a period where a lowering speed due to the

phasing-out of the Hartz-reform effects was already expected.

Prospective research could benefit from extending the concept of measuring mismatch

to the newly incoming vacancies and unemployed. Such an approach would take into

account two measures of structural incongruence: One for the stock, and the other for

the flow variables, which would probably complement the stock-flow matching model even

better. Furthermore, one could investigate whether and to what extent further potential

driving factors of the efficiency parameter (such as intensity of job search) can improve

forecasts of hirings.
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