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Releasing Multiply-Imputed Synthetic Data Generated
in Two Stages to Protect Confidentiality

J. P. Reiter∗and Jörg Drechsler†

Abstract

To protect the confidentiality of survey respondents’ identities and sensitive attributes, sta-
tistical agencies can release data in which confidential values are replaced with multiple im-
putations. These are called synthetic data. We propose a two-stage approach to generating
synthetic data that enables agencies to release different numbers of imputations for different
variables. Generation in two stages can reduce computational burdens, decrease disclosure
risk, and increase inferential accuracy relative to generation in one stage. We present methods
for obtaining inferences from such data. We describe the application of two stage synthesis to
creating a public use file for a German business database.
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1 INTRODUCTION
Many national statistical agencies, survey organizations, and researchers—henceforth all called
agencies—disseminate microdata, i.e. data on individual units, in public use files. These agencies
strive to release files that are (i) safe from attacks by ill-intentioned data users seeking to learn
respondents’ identities or attributes, (ii) informative for a wide range of statistical analyses, and
(iii) easy for users to analyze with standard statistical methods. Doing this well is a difficult task.
The proliferation of publicly available databases and improvements in record linkage technologies
have increased the risk of disclosure to the point where most agencies alter microdata before re-
lease (Reiter, 2004a). For example, agencies globally recode variables, such as releasing ages in
five year intervals or top-coding incomes above 100,000 as “100,000 or more” (Willenborg and
de Waal, 2001); they swap data values for randomly selected units (Dalenius and Reiss, 1982); or,
they add random noise to continuous data values (Fuller, 1993). When applied with high inten-
sity, these strategies reduce the utility of the released data, making some analyses impossible and
severely distorting the results of others. They also complicate analyses for users. To analyze per-
turbed data properly, users should apply the likelihood-based methods described by Little (1993)
or the measurement error models described by Fuller (1993). These can be difficult to use for

∗Department of Statistical Science, Box 90251, Duke University, Durham, NC 27708-0251. E-mail:
jerry@stat.duke.edu

†Institute for Employment Research, Regensburger Str. 104, 90478 Nuremberg, Germany. E-mail: jo-
erg.drechsler@iab.de

1



non-standard estimands and may require analysts to learn new statistical methods and specialized
software programs.

An alternative approach to disseminating public use data was suggested by Rubin (1993): re-
lease multiply-imputed, synthetic data sets. Specifically, he proposed that agencies (i) randomly
and independently sample units from the sampling frame to comprise each synthetic data set, (ii)
impute unknown data values for units in the synthetic samples using models fit with the original
survey data, and (iii) release multiple versions of these data sets to the public. A related approach
was suggested by Fienberg (1994). These are called fully synthetic data sets. Releasing fully
synthetic data can protect confidentiality, since identification of the sampled units and their sen-
sitive data is very difficult when the values in the released data are not actual, collected values.
Furthermore, with appropriate synthetic data generation and the inferential methods developed by
Raghunathan et al. (2003) and Reiter (2005c), users can make valid inferences for a variety of
estimands using standard, complete-data statistical methods and software. Other attractive fea-
tures of fully synthetic data are described by Rubin (1993), Little (1993), Fienberg et al. (1998),
Raghunathan et al. (2003), Abowd and Lane (2004), and Reiter (2002, 2005b).

Some agencies have adopted a variant of Rubin’s original approach, suggested by Little (1993):
release data sets comprising the units originally surveyed with some collected values, such as sen-
sitive values at high risk of disclosure or values of key identifiers, replaced with multiple imputa-
tions. These are called partially synthetic data sets. For example, the U.S. Federal Reserve Board
protects data in the Survey of Consumer Finances by replacing monetary values at high disclosure
risk with multiple imputations, releasing a mixture of these imputed values and the unreplaced,
collected values (Kennickell, 1997). The U.S. Bureau of the Census and Abowd and Woodcock
(2001, 2004) protect data in longitudinal, linked data sets by replacing all values of some sensi-
tive variables with multiple imputations and leaving other variables at their actual values. Liu and
Little (2002) and Little et al. (2004) present a general algorithm, named SMIKe, for simulating
multiple values of key identifiers for selected units. Partially synthetic, public use data products
are in the development stage in the U.S. for the Survey of Income and Program Participation, the
Longitudinal Business Database, the Longitudinal Employer-Household Dynamics survey, and the
American Communities Survey group quarters data.

Partially synthetic approaches are appealing because they promise to maintain the primary ben-
efits of fully synthetic data—protecting confidentiality while allowing users to make inferences
without learning complicated statistical methods or software—with decreased sensitivity to the
specification of imputation models. Valid inferences from partially synthetic data sets can be ob-
tained using the methods developed by Reiter (2003, 2005c), whose rules for combining point and
variance estimates differ from those of Rubin (1987) and also from those of Raghunathan et al.
(2003). Methods for handling missing data simultaneously with partially synthetic data are devel-
oped in Reiter (2004b). Other illustrations of partially synthetic data include Reiter (2005d) and
Mitra and Reiter (2006).

In this article, we present a two-stage approach to generating fully and partially synthetic data,
in which agencies impute some variables only a few times and other variables many times. Two
stage synthesis can have advantages over one-stage synthesis. In some settings, it reduces disclo-
sure risks while increasing data usefulness. For example, agencies may want to release only a few
imputed values of quasi-identifiers or sensitive variables, since intruders can use information from
multiple data sets to refine guesses of the true values (Liu and Little, 2002; Reiter, 2005d; Mitra
and Reiter, 2006), but they may want to release large numbers of imputations for other variables to
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drive down the variance introduced by imputation. In other settings, it reduces the labor needed to
generate synthetic data. This is the case for the two-stage synthesis of the public release data for
the German Institute for Employment Research (IAB) Establishment Panel, which is described in
Section 2. A related approach, called nested multiple imputation (Shen, 2000; Harel and Schafer,
2003; Rubin, 2003b), has been used to reduce labor in the context of imputation for missing data.

The paper is organized as follows. Section 2 motivates the usefulness of two-stage synthetic
data for reducing disclosure risks or decreasing agencies’ labor. Section 3 derives methods for
obtaining inferences from two-stage fully or partially synthetic data. These methods account for the
correlations among estimates within the same first-stage nest. Section 4 illustrates the performance
of these methods via simulation studies. Section 5 concludes with general remarks about two-stage
synthetic data.

2 Motivation for two-stage synthesis
In this section, we first review evidence from the literature on the implications for disclosure risk
and inferential accuracy of releasing many synthetic data sets. Two stage synthesis allows agencies
to compromise on the risk-accuracy trade-off. We then describe the synthesis of data from the IAB
Establishment Panel, for which one-stage synthesis demands too high labor cost.

2.1 Implications of releasing many synthetic data sets
From the perspective of the data analyst, there are benefits when agencies release a large number of
multiply-imputed, synthetic data sets. The variability in point estimates computed with synthetic
data decreases with the number of replicates. The reduction can be substantial when many values
are synthesized. For example, Reiter (2002) finds roughly a 30% increase in the variance of survey-
weighted estimates of population means when dropping from one hundred to five fully synthetic
data sets. Reiter (2003) finds nearly a 100% increase in variance of regression coefficients when
going from fifty to two partially synthetic data sets in which all of the dependent variable is replaced
with imputations. Increasing the number of replicates also reduces the variability in estimators of
variance. This variability can be large when many values are synthesized; in fact, for fully synthetic
data, Reiter (2005b) finds that some variance estimators computed with ten fully synthetic data sets
are so poor as to be essentially worthless. Those variance estimators have acceptable properties
with one hundred replicates. We note that the incremental benefits become minimal as the number
of replicates gets large.

From the perspective of the agency, there are risks to releasing a large number of multiply-
imputed, synthetic data sets. Increasing the number of replicates provides more information for
intruders to estimate the original data values. To illustrate this, we extend the partial synthesis
done by Mitra and Reiter (2006), which used the 1987 U.S. Survey of Youth in Custody. The
survey interviewed youths in juvenile facilities about their family background, previous criminal
history, and drug and alcohol use. The sample contains 2,621 youths in 50 facilities. Mitra and
Reiter (2006) consider facility membership to be potentially identifying information. Therefore,
they generate new facility identifiers for all 2,621 youths. This is done by (i) fitting multinomial
regressions of facility identifiers on the survey variables, (ii) drawing new values of parameters
for the regressions and computing the resulting predicted probabilities for each youth, and (iii)
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simulating new identifiers from the multinomial distributions based on the predicted probabilities.
To assess disclosure risk, they assumed that the intruder uses the mode of each youth’s multiply-
imputed facility as the best guess of the youth’s actual facility. When no unique mode exists,
they randomly select one value. We follow the same procedures for different numbers of synthetic
data sets. With three replicates, approximately 17% of intruders’ guesses are correct. With ten
replicates, this increases to 20%. With fifty replicates, this increases to 24%. While perhaps not
alarming, the increasing identification rates certainly would push agencies to minimize the number
of imputations of facilities.

For fully synthetic data, there has been little work on the impacts on disclosure risk of releasing
many replicates. In part, this is because identification disclosure risks are low for fully synthetic
data. Each data set contains different samples of records, and all survey variables are synthesized.
However, the risks are not zero. When the imputation models are highly detailed, the imputations
could reproduce combinations of quasi-identifiers for real records. Intruders might interpret this
to mean that real-data records with those characteristics were in the original sample, which could
result in identification disclosures if some of those records are unique in the population. This risk
could be magnified when releasing multiple synthetic data sets, because (i) there are several op-
portunities to impute such records, and (ii) there could be repetitions of realistic synthetic records,
which might strengthen the intruder’s confidence that a similar real record was in the original data.

Ideally, when considering the release of public use data, the agency balances confidential-
ity protection and inferential accuracy; see, for example, Duncan et al. (2001), Skinner and Elliot
(2002), Reiter (2005a), Gomatam et al. (2005), and Karr et al. (2006). Confidentiality concerns of-
ten trump accuracy concerns. With one stage synthetic data, favoring confidentiality over accuracy
could lead agencies to release few replicates. With two stage synthesis, agencies can compromise
on the risk-accuracy trade-off. Agencies can release few imputations of quasi-identifiers or other
confidential variables to reduce disclosure risks, and release many imputations of other variables
to enable analysts to improve precision for analyses involving those variables.

2.2 Synthesis of the IAB Establishment Panel
The IAB Establishment Panel, conducted since 1993, contains detailed information about German
firms’ personnel structure, development, and policy. Considered one of most important business
panels in Germany, there is high demand for access to these data from external researchers. Be-
cause of the sensitive nature of the data, researchers desiring direct access to the data have to work
on site at the IAB. Alternatively, researchers can submit code for statistical analyses to the IAB
research data center, whose staff run the code on the data and send the results to the researchers.
To help researchers develop code, the IAB provides remote access to a publicly available “dummy
data set” with the same structure as the Establishment Panel. The dummy data set comprises ran-
dom numbers generated without attempts to preserve the distributional properties of the variables
in the Establishment Panel data. For all analyses done with the genuine data, researchers can
publicize their analyses only after IAB staff check for potential violations of confidentiality.

Releasing public use files of the Establishment Panel would allow more researchers to access
the data with fewer burdens, stimulating research on German business data. It also would free up
staff time from running code and conducting confidentiality checks. Because there are so many
sensitive variables in the data set, standard disclosure limitation methods like swapping or mi-
croaggregation would have to be applied with high intensity, which would severely compromise
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the utility of the released data. Therefore, the IAB decided to develop synthetic data, specifically
(at this stage) fully synthetic data.

Each synthetic data set comprises establishments sampled from the sampling frame for the
Establishment Panel. We sample records according to the design of the Establishment Panel—
stratifying by region, establishment size, and industry—to take advantage of the efficiency gained
by the original stratification. Let X be the variables corresponding to the stratum indicators.

We impute values of the Establishment Panel survey variables, Yb, for all establishments in the
synthetic data samples. These models are developed as follows. First, for all records in the original
panel, we obtain establishment-level data, Ya, from the German Social Security Data (GSSD).
The GSSD contains information on individuals covered by social security, including data on their
employer such as demographic characteristics and average wages of its employees. The employers
are identified by the establishment identification numbers used in the Establishment Panel, which
enables direct matching between the two data sources. Second, we build a statistical model relating
Yb to (X, Ya) using the data from the original panel. Third, for each synthetic sample, we match
the newly drawn establishments to the GSSD and append their values of Ya to the synthetic data.
Fourth, we simulate values of Yb from f(Yb|X, Ya), using the X and the appended values of Ya

for the new establishments. After the imputation, all variables in Ya are deleted for confidentiality
reasons. The result is a synthetic data set that mimics the structure of the Establishment Panel,
comprising the stratification indicators X and the imputed survey variables Yb.

Previous research has shown that releasing large numbers of fully synthetic data sets improves
synthetic data inferences (Reiter, 2005b). The usual advice from multiple imputation for miss-
ing data—release five multiply-imputed data sets—tends not to work well for fully synthetic data
because the fractions of “missing” information are large. Following Reiter (2005b), the IAB de-
sired to generate and release one hundred fully synthetic data sets. However, doing so requires
matching to the GSSD one hundred times and imputing Yb for each matched sample. These are
very labor intensive tasks. The matching has to be checked and corrected if necessary each time,
and the matched data need to be transferred to different software platforms for the imputation of
Yb. Furthermore, each matched data file is re-configured manually to implement the imputation
routines.

This led the IAB synthesis team to adopt a two stage approach to synthesis. We draw only ten
synthetic samples, thus requiring only ten iterations of matching and data processing to obtain Ya.
For each sample, we impute Yb another ten times, resulting in one hundred data sets. This two-
stage method reduces the labor by a factor of ten while allowing us to release one hundred data
sets containing information about Yb as opposed to only ten. For more details about the imputa-
tion models in the synthesis, which are based on the sequential multivariate regression imputation
strategy of Raghunathan et al. (2001), see Drechsler et al. (2007).

The ten sets of Yb for each sample are correlated. Standard one-stage methods of inference do
not account for this nested structure. Section 3 derives new methods of inference for two stage
synthesis, both for fully and partially synthetic data. The methods are presented assuming all
variables are released, but they apply when some variables are suppressed as in the synthesis of the
Establishment Panel. The methods also assume for generality that (Ya, Yb) is known only for the
sampled records.
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3 Inferences with two-stage synthetic data
For a finite population of size N , let Il = 1 if unit l is included in the survey, and Il = 0 otherwise,
where l = 1, . . . , N . Let I = (I1, . . . , IN), and let the sample size s =

∑

Il. Let X be the
N × d matrix of sampling design variables, e.g. stratum or cluster indicators or size measures.
We assume that X is known approximately for the entire population, for example from census
records or the sampling frame(s). Let Y be the N × p matrix of survey data for the population. Let
Yinc = (Yobs, Ymis) be the s× p sub-matrix of Y for all units with Il = 1, where Yobs is the portion
of Yinc that is observed and Ymis is the portion of Yinc that is missing due to nonresponse. Let R
be an N × p matrix of indicators such that Rlk = 1 if the response for unit l to item k is recorded,
and Rlk = 0 otherwise. The observed data is thus Dobs = (X, Yobs, I, R).

3.1 Fully synthetic data
Let Ya be the values simulated in stage 1, and let Yb be the values simulated in stage 2. The agency
seeks to release fewer replications of Ya than of Yb, yet do so in a way that enables the analyst of the
data to obtain valid inferences with standard complete data methods. To do so, the agency generates
synthetic data sets in a three-step process. First, the agency fills in the unobserved values of Ya

by drawing values from f(Ya | Dobs), creating a partially completed population. This is repeated
independently m times to obtain Y

(i)
a , for i = 1, . . . , m. Second, in each partially completed

population defined by nest i, the agency generates the unobserved values of Yb by drawing from
f(Yb | Dobs, Y

(i)
a ), thus completing the rest of the population values. This is repeated independently

r times for each nest to obtain Y (i,j)
b for i = 1, . . . , m and j = 1, . . . , r. The result is M = mr

completed populations, P (i,j) = (Dobs, Y
(i)
a , Y

(i,j)
b ), where i = 1, . . . , m and j = 1, . . . , r. Third,

the agency takes a simple random sample of size nsyn from each completed population P (i,j) to
obtain D(i,j). These M samples, Dsyn = {D(i,j) : i = 1, . . . , m; j = 1, . . . , r}, are released to the
public. Each released D(i,j) includes a label indicating its value of i, i.e. an indicator for its nest.

The agency can sample from the completed populations using designs other than simple ran-
dom samples, for example the stratified sampling in the IAB Establishment Panel synthesis. When
synthetic data are generated using complex samples, the analyst should account for the sampling
design to obtain valid inferences, such as using survey-weighted estimates. One advantage of creat-
ing synthetic data by simple random sampling is that analysts need not deal with complex sampling
designs; they can analyze the synthetic data as if they come from simple random samples.

The agency could simulate Y for all N units, thereby avoiding the release of any actual values
of Y . In practice, it is not necessary to generate completed-data populations for constructing
the D(i,j); the agency need only generate values of Y for units in the synthetic samples. The
formulation of completing the population, then sampling from it, aids in deriving the methods for
inference.

Let Q be the estimand of interest, such as a population mean or a regression coefficient. The
analyst of synthetic data seeks f(Q|Dsyn). The three-step process for creating Dsyn suggests that

f(Q|Dsyn) =

∫

f(Q|Dobs, Psyn, Dsyn)f(Dobs|Psyn, Dsyn)f(Psyn|Dsyn)dDobsdPsyn, (1)

where Psyn = {P (i,j) : i = 1, . . . , m; j = 1, . . . , r}. For all derivations in Section 3, we assume
that the analyst’s distributions are identical to those used by the agency for creating Dsyn. We
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also assume that the sample sizes are large enough to permit normal approximations for these
distributions. Thus, we require only the first two moments for each distribution, which we derive
using standard large sample Bayesian arguments. Diffuse priors are assumed for all parameters.

To begin, the synthetic data are irrelevant for inference aboutQ given the observed data, so that
f(Q|Dobs, Psyn, Dsyn) = f(Q|Dobs). We assume that

(Q|Dobs) ∼ N(Qobs, Uobs), (2)

where Qobs and Uobs are the estimates of the mean and variance computed from Dobs if it were
released.

The Dsyn is irrelevant given Psyn, so that f(Dobs|Psyn, Dsyn) = f(Dobs|Psyn). Because in-
ferences for Q depend only on Qobs and Uobs, it is sufficient to determine f(Qobs, Uobs|Psyn). Let
Q(i,j) be the estimate of Q in population P (i,j). Let Q̄(i)

r =
∑

j Q
(i,j)/r, and Q̄M =

∑

i Q̄
(i)
r /m.

Let BM =
∑

i(Q̄
(i)
r − Q̄M )2/(m − 1), and W (i)

r =
∑

j(Q
(i,j) − Q̄

(i)
r )2/(r − 1). We assume the

following sampling distributions:
(

Q̄(i)
∞
|Dobs, B∞

)

∼ N(Qobs, B∞) (3)
(

Q(i,j)|Q̄(i)
∞
,W (i)

∞

)

∼ N(Q̄(i)
∞
,W (i)

∞
) (4)

where the Q̄(i)
∞ , the W (i)

∞ , and B∞ are the limits of the corresponding finite-sum quantities as m→
∞ and r → ∞. The process of repeatedly completing populations and estimating Q in this nested
manner is equivalent to simulating the posterior distribution of Q. Hence, the Uobs = B∞ + W̄∞,
where W̄∞ = lim

∑

iW
(i)
∞ /m as m→ ∞. From (2), (3), and (4), for finite m and r we have

(

Q|Psyn, B∞,W
(1)
∞
, . . . ,W (m)

∞

)

∼ N(Q̄M , (1 + 1/m)B∞ + (1 + 1/(mr))W̄∞). (5)

We also have
(

(m− 1)BM/(B∞ + W̄∞/r)|Psyn, W̄∞

)

∼ χ2
m−1 (6)

(

(r − 1)W (i)
r /W (i)

∞
|Psyn

)

∼ χ2
r−1. (7)

The posterior distribution of Q conditioning on Psyn alone is found by integrating (5) over the
distributions in (6) and (7).

In general, releasing Psyn is impractical for agencies, as it could require releasing M data files
of very large size N . We therefore take random samples of size nsyn from each population, i.e.
the D(i,j). We require the distributions of Q̄M , B∞, and the W (i)

∞ conditional on Dsyn. For all
(i, j), let q(i,j) be the estimate of Q(i,j), and let u(i,j) be the estimate of the variance associated
with q(i,j). The q(i,j) and u(i,j) are computed based on the design used to sample from P (i,j). Note
that when nsyn = N , the u(i,j) = 0. Let q̄(i)

r =
∑

j q
(i,j)/r, and q̄M =

∑

i q̄
(i)
r /m. Let bM =

∑

i(q̄
(i)
r − q̄M)2/(m−1), and w(i)

r =
∑

j(q
(i,j)− q̄

(i)
r )2/(r−1). Finally, let ūM =

∑

i,j u
(i,j)/(mr).

For nsyn large, we assume the sampling distribution of each (q(i,j)|P
(i)
syn) is N(Q(i,j), U (i)),

where U (i) is an implied sampling variance. We further assume that the sampling variability in
the u(i,j) is negligible, so that u(i,j) ≈ U (i). We also make the simplifying assumption that the
variability in the U (i) across nests is small, so that U (i) ≈

∑

U (i)/m. Thus, we have

(q(i,j)|P (i)
syn) ∼ N(Q(i,j), ūM). (8)
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Using the standard Bayesian arguments based on these sampling distributions, we have
(

Q̄(i)|q̄(i)
r , ūM

)

∼ N(q̄(i)
r , ūM/r) (9)

and
(

Q̄M |Dsyn

)

∼ N(q̄M , ūM/(mr)). (10)

To obtain the conditional distributions of B∞ and the W (i)
∞ , we use an analysis of variance

setup. From (4) and (8), we have
(

(r − 1)w
(i)
r

W
(i)
∞ + ūM

|Dsyn

)

∼ χ2
r−1. (11)

From (3), (4), and (8), and making the simplifying assumption that the W (i)
∞ = W̄∞ for all i, we

have
(

(m− 1)bM
B∞ + W̄∞/r + ūM/r

|Dsyn, W̄∞

)

∼ χ2
m−1 (12)

(

m(r − 1)w̄M

W̄∞ + ūM

|Dsyn

)

∼ χ2
m(r−1) (13)

where w̄M =
∑

i w
(i)
r /m.

To obtain the conditional distribution of Q given Dsyn, we should integrate the distributions in
(5), (6), and (7) with respect to the distributions of Q̄M , B∞, and the W (i)

∞ in (10), (11), and (12).
Although this integration can be carried out numerically, we desire a straightforward approxima-
tion that can be easily computed by analysts using Dsyn. For large m and r, we can approximate
f(Q|Dsyn) by a normal distribution with mean E(Q|Dsyn) and variance V ar(Q|Dsyn). Using (5)
and (10), we have

E(Q|Dsyn) = E[E(Q|Q̄M)|Dsyn] = E(Q̄M |Dsyn) = q̄M . (14)

Similarly,

V ar(Q|Dsyn) = E[V ar(Q|Psyn, B∞, W̄∞)|Dsyn] + V ar[E(Q|Psyn, B∞, W̄∞)|Dsyn]

= (1 +m−1)E(B∞|Dsyn) + (1 + 1/(mr))E(W̄∞|Dsyn) + ūM/(mr). (15)

Based on (12) and (13), we approximate the expectations in (15) as E(W̄∞|Dsyn) ≈ w̄M − ūM

and E(B∞|Dsyn) ≈ bM − w̄M/r. Substituting these approximate expectations in (15), we obtain

V ar(Q|Dsyn) ≈ (1 +m−1)(bM − w̄M/r) + (1 + 1/(mr))(w̄M − ūM) + ūM/(mr)

= (1 +m−1)bM + (1 − 1/r)w̄M − ūM = Tf . (16)

For modest m and r, we obtain inferences by using a t-distribution, (q̄M − Q) ∼ tνf
(0, Tf).

The degrees of freedom, νf , equal

νf =

(

((1 + 1/m)bM )2

(m− 1)T 2
f

+
((1 − 1/r)w̄M)2

(m(r − 1))T 2
f

)

−1

.
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The degrees of freedom is derived by matching the first two moments of (νfTf)/(ūM/(mr)+(1+
1/m)B∞ + (1 + 1/(mr))W̄∞) to an inverse chi-squared distribution with νf degrees of freedom.
The derivation is presented in the appendix.

It is possible that Tf < 0, particularly for small values of m and r. To adjust for this possibility,
one approach is to use the conservative and always positive variance estimator,

T ∗

f = Tf + λūM , (17)

where λ = 1 when Tf ≤ 0 and λ = 0 when Tf > 0. Generally, negative values of Tf can be
avoided by making nsyn or m and r large.

When Tf < 0, using the degrees of freedom νf is overly conservative, since T ∗

f tend to be
already conservative when λ = 1. To avoid excessively wide confidence intervals, one approach is
to base inferences on normal distributions in this case. Equivalently, and for notational simplicity,
use t-distributions with degrees of freedom ν∗f , where

ν∗f = νf + λ∞. (18)

The νf can be very small even when Tf > 0, which could result in excessively wide intervals. We
evaluate a modification to νf when it is small in Section 4.

3.2 Partially synthetic data
We assume that Yinc = Yobs, i.e. there is no missing data. Methods for handling missing data and
one stage of partial synthesis simultaneously are presented by Reiter (2004b).

The agency generates the partially synthetic data in two stages. Let Y (i)
a be the values imputed

in the first stage in nest i, for i = 1, . . . , m. Let Y (i,j)
b be the values imputed in the second stage

in data set j in nest i, for j = 1, . . . , r. Let Ynrep be the values of Yobs that are not replaced with
synthetic data and hence are released as is. Let Za,l = 1 if unit l, for l = 1, . . . , s, is selected to
have any of its first-stage data replaced with synthetic values, and let Za,l = 0 for those units with
all first-stage data left unchanged. Let Zb,l be defined similarly for the second-stage values. Let
Z = (Za,1, . . . , Za,s, Zb,1, . . . , Zb,s).

To create the Y (i)
a for those records with Za,l = 1, first the agency draws from f(Ya | Dobs, Z),

conditioning only on values not in Yb. Second, in each nest, the agency generates the Y (i,j)
b for

those records with Zb,l = 1 by drawing from f(Y
(i,j)
b | Dobs, Z, Y

(i)
a ). Each synthetic data set,

D(i,j), comprises (X, Y
(i)
a , Y

(i,j)
b , Ynrep, I, Z). The entire collection of M = mr data sets, Dsyn =

{D(i,j), i = 1, . . . , m; j = 1, . . . , r}, with labels indicating the nests, is released to the public.
To obtain inferences from nested partially synthetic data, we assume the analyst acts as if each

D(i,j) is a sample according to the original design. We require the integral,

f(Q|Dsyn) =

∫

f(Q|Dobs, Dsyn)f(Dobs|Dsyn)dDobs. (19)

Unlike in fully synthetic data, there is no intermediate step of completing populations. Let q (i,j),
q̄

(i)
r , q̄M , bM , and the w(i)

r be defined as in the previous section. Define q̄(i)
∞ = lim q̄

(i)
r , b∞ = lim bM ,

and w(i)
∞ = limw

(i)
r as m→ ∞ and r → ∞.

9



With large samples, we assume again that f(Q|Dobs) = N(Qobs, Uobs). We assume that the
sampling distributions of the synthetic data point estimators are

(

q̄(i)
∞
|Dobs, b∞

)

∼ N(Qobs, b∞) (20)
(

q(i,j)|Dobs, q̄
(i)
∞
, w(i)

∞

)

∼ N(q̄(i)
∞
, w(i)

∞
). (21)

When coupled with (2) and diffuse priors on all parameters, (20) and (21) imply that
(

Q|Dsyn, b∞, w
(1)
∞
, . . . , w(m)

∞

)

∼ N(q̄M , Uobs + b∞/m+ w̄∞/(mr)). (22)

Since the Ya and Yb are simulated from their conditional distributions, each u(i,j) approximates
Uobs. We assume that the u(i,j) have low variability, so that u(i,j) ≈ ūM ≈ Uobs.

The posterior distributions of b∞ and the w(i)
∞ are obtained from an analysis of variance setup.

From (21), we have
(

(r − 1)w
(i)
r

w
(i)
∞

|Dsyn

)

∼ χ2
r−1. (23)

From (20), (21), and (23), and making the simplifying assumption that the w(i)
∞ = w̄∞ for all i, we

have
(

(m− 1)bM
b∞ + w̄∞/r

|Dsyn, w̄∞

)

∼ χ2
m−1 (24)

(

m(r − 1)w̄M

w̄∞

|Dsyn

)

∼ χ2
m(r−1). (25)

To obtain the conditional distribution of Q, we should integrate (22) over the distributions in
(23) and (24). For large m and r, we can approximate this with a normal distribution, substituting
the approximate expected values of b∞ and w̄∞ into the variance in (22). For large m and r, this
variance simplifies to Tp = ūM +bM/m, so that the approximate normal distribution is (q̄M −Q) ∼
N(0, Tp).

For small m and r, we can use a t-distribution for inferences, (q̄M − Q) ∼ tνp
(0, Tp). The

degrees of freedom νp = (m− 1)(1+mūM/bM)2. The degrees of freedom is derived by matching
the first two moments of (νp(ūM + bM/m))/(ūM + b∞/m+ w̄∞/(mr)) to an inverse chi-squared
distribution with νp degrees of freedom. The derivation is presented in the appendix.

4 Illustrative simulations
In this section, we present results from simulation studies of the inferential methods for two-stage,
fully synthetic data. The studies are designed to resemble the synthesis for the IAB Establishment
Panel. They include evaluations of adjustments for negative variance estimates and small degrees
of freedom. We do not present the results from simulation studies of two-stage partially synthetic
data. Results from those studies indicated that the inferential methods outlined in Section 3.2 have
good frequentist properties without any need for adjustments.

We generate a population of N = 100, 000 records comprising five variables, Y1, . . . , Y5. The
(Y1, Y2) are drawn from a joint t-distribution with 20 degrees of freedom and a correlation of 0.5.
The (Y3, Y4, Y5) are drawn from the joint normal distribution N(µ,Σ), where

10



µ =





1.5Y1 + 1.5Y2

2.5Y1 + 2.5Y2

−3.0Y1 − 3.0Y2



 and Σ =





30 15 15
15 30 15
15 15 30



 .

The observed data, Dobs, comprise the values of (Y1, . . . , Y5) for a simple random sample of
s = 1, 000 records from this population. We assume that (Y1, Y2) are known for all N records and
that (Y3, Y4, Y5) are known only for the s sampled records. Using an analogy with the IAB Estab-
lishment Panel synthesis, the (Y1, Y2) are like variables found in the German Social Security Data;
the (Y3, Y4, Y5) are like variables only found in the Establishment Panel; and, concatenating all five
variables for the s records is like matching the information from the GSSD for the Establishment
Panel respondents. For simplicity, we do not incorporate stratification in the sampling.

We treat Ya = (Y1, Y2) as the first stage variables and Yb = (Y3, Y4, Y5) as the second stage
variables. For each synthetic data set D(i,j), where i = 1, . . . , m and j = 1, . . . , r, we generate
Y

(i)
a by taking a random sample of nsyn = 1, 000 records from the population and using their

values of (Y1, Y2). We generate the Y (i,j)
b for these records by sampling from the posterior predic-

tive distribution, f(Y3, Y4, Y5|Dobs, Y
(i)
a ), with noninformative prior distributions on all parameters.

That is, we draw Y
(i,j)
3 from the regression f(Y3|Dobs, Y

(i)
a ), we draw Y

(i,j)
4 from the regression

f(Y4|Dobs, Y
(i)
a , Y

(i,j)
3 ), and we draw Y

(i,j)
5 from the regression f(Y5|Dobs, Y

(i)
a , Y

(i,j)
3 , Y

(i,j)
4 ). The

released data comprise the mr copies of the (Y
(i)
a , Y

(i,j)
b ). By including the imputations for the first

stage variables in the released data, we deviate from the IAB Establishment Panel synthesis. How-
ever, this enables evaluations of inferences for relationships between variables imputed at different
stages.

To evaluate the performance of the inferential methods, we estimate five quantities: the popu-
lation mean of Y3 (Ȳ3), the regression coefficients of Y1 (β1) and of Y5 (β5) in a regression of Y3

on all other variables, and the regression coefficients of Y2 (α2) and of Y5 (α5) in a regression of
Y1 on all other variables. We repeat the process of drawing D and generating synthetic data sets
5,000 times. For simplicity, we do not utilize the small finite population correction factors when
computing the u(i,j).

Table 1 summarizes the results for several combinations of m and r. The averages of the q̄M

across the iterations are within simulation error of their corresponding population values; we do
not report them in the table. For most estimands, the Tf are nearly unbiased for the V ar(q̄M).
The Tf associated with α2 and α5 tend to have positive bias. For m = r = 3, the values of Tf

are frequently negative. This results from high variability in bM and w̄M , making them unstable
estimates of B∞ and W̄∞. Negative variance estimates become less frequent as M increases, since
the variability in bM and w̄M decreases. The always positive variance estimator T ∗

f is, as expected,
conservative.

The column labeled “95% CI Cov∗” displays the percentages of the 5,000 synthetic 95%
confidence intervals that cover their corresponding Q. The intervals are based on T ∗

f and on t-
distributions with ν∗f defined in (18). For scenarios with low m and r, the procedure generally
produces intervals with greater than nominal coverage rates. In part this is due to the conservative
nature of T ∗

f . It also results from small values of ν∗f , sometimes less than one, that arise because
of inadequacies in the approximations for modest m and r. To avoid using unrealistically small
degrees of freedom, we construct the modified degrees of freedom,

ν∗∗f = max{(m− 1), ν∗f}. (26)
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As displayed in the column labeled “95% CI Cov∗∗,” these coverage rates are closer to 95%. We
note that confidence intervals based on a normal distribution for all iterations led to consistently
lower than nominal coverage rates.

m, r Q Var(q̄M ) Avg. Tf %Tf < 0 Avg. T ∗

f 95% CI Cov∗ 95% CI Cov∗∗

3, 3 Ȳ3 .0409 .0389 15.7 .0448 94.2 93.8
β1 .0537 .0533 12.3 .0587 98.0 95.9
β5 .00108 .00106 12.2 .00117 98.0 96.2
α2 .000766 .000850 24.8 .00109 97.6 96.3
α5 .0000121 .0000126 19.3 .0000151 97.8 95.7

5, 5 Ȳ3 .0327 .0335 3.6 .0349 99.2 95.5
β1 .0458 .0471 1.8 .0479 98.8 96.0
β5 .000929 .000942 1.8 .000958 98.8 95.8
α2 .000615 .000686 12.1 .000802 99.6 95.0
α5 .00000980 .0000109 6.0 .0000116 99.6 95.6

5, 20 Ȳ3 .0319 .0319 0.0 .0319 95.6 95.4
β1 .0448 .0449 0.0 .0449 95.4 95.4
β5 .000878 .000901 0.0 .000901 95.8 95.7
α2 .000581 .000662 4.1 .000701 99.1 95.0
α5 .00000925 .0000103 0.4 .0000103 97.3 96.0

20, 5 Ȳ3 .0303 .0308 0.0 .0308 95.9 94.8
β1 .0454 .0450 0.0 .0450 95.1 94.9
β5 .000885 .000890 0.0 .000890 95.1 94.8
α2 .000501 .000576 0.7 .000582 98.4 94.1
α5 .00000870 .0000953 0.1 .00000955 96.9 95.0

20, 20 Ȳ3 .0312 .0305 0.0 .0305 94.6 94.6
β1 .0426 .0444 0.0 .0444 95.5 95.5
β5 .000850 .000885 0.0 .000885 95.6 95.6
α2 .000492 .000573 0.0 .000573 96.6 95.9
α5 .00000869 .00000946 0.0 .00000946 96.0 96.0

Table 1: Simulation results for two stage fully synthetic data

Although not displayed in the table, we also evaluated inferences for the population mean of
Y1. The Tf was again unbiased, but it was negative in many iterations. This problem can be traced
to an inconsistency between the derivations and the simulation design. The derivations assume that
Ya is not known for the population, so that f(Ya|Dobs) is an estimated rather than exact distribution.
In the simulation, we sample directly from the population and from f(Ya). Hence, the estimated
variance of

∑

i Ȳ
(i)
1 /m equals ūM/m. The Tf is still correct in expectation because the w(i)

r = 0
for i = 1, 2, ..., m and the E(bM) = ūM . However, the variability in bM in this simulation is large
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enough to result in many instances where Tf < 0. There is a simple fix to this problem: for settings
where the values in Ya are sampled from a known population of values, use ūM/m instead of Tf

to calculate the variance of estimates involving only Ya.
We also examined the performance of the variance estimator for one stage fully synthetic data

developed by Raghunathan et al. (2003). That is, we ignored the nesting. The one-stage variance
estimator tends to underestimate variances. This underestimation becomes less severe as m and r
increase.

5 Concluding Remarks
The key to any synthetic data approach is the imputation models. When high fractions of values
are synthesized, the validity of inferences depends critically on the validity of the models used to
generate the synthetic data. The synthetic data reflect only those relationships included in the data
generation models. When the models fail to reflect accurately certain relationships, analysts’ infer-
ences also will not reflect those relationships. Similarly, incorrect distributional assumptions built
into the models will be passed on to the users’ analyses. In practice, this dependence means that
some analyses cannot be performed accurately, and that agencies need to release information that
helps analysts decide whether or not the synthetic data are reliable for their analyses. For example,
agencies might include summaries of the posterior distributions of parameters in the data genera-
tion models as attachments to public releases of data. Or, they might include generic statements
that describe the imputation models, such as “Main effects for age, sex, and race are included in
the imputation models for education.” This transparency also is a benefit of the synthetic data
approach: analysts are given indications of which analyses can be reliably performed with the syn-
thetic data. Analysts who desire finer detail than afforded by the imputations may have to apply
for special access to the observed data.

As with multiple imputation for missing data, the inferential methods in Section 3 are derived
from Bayesian perspectives and presume that the analyst and imputer use the same models for in-
ferences about Q (Rubin, 1987, Chapter 3). This typically is not the case in public use data. Many
analysts of public use data files estimate domain means and basic regressions, whereas agencies
generate imputations from more complicated models. There has been little work on the properties
of synthetic data inferences when the imputation and analysis models differ. Frequentist evalua-
tions based on genuine data (Reiter, 2005b,d) suggest that one stage synthetic data inferences have
good properties—in the sense that coverage rates of confidence intervals are near or exceed nomi-
nal rates—when the imputation models are more general than the analysts’ inferences. Similar re-
sults are found in the missing data literature for congenial imputations (Meng, 1994; Schafer, 1997;
Rubin, 2003a). The simulation results in this paper are in accord with these findings. These results
notwithstanding, more research on congeniality issues for two stage synthetic data is needed.

Additional topics for future research specific to two stage synthesis include methods for select-
ing m and r based on risk-utility evaluations, for using the M data sets to do significance tests of
multi-component hypotheses and other multivariate inference, and for handling missing data and
confidentiality simultaneously, perhaps in a three stage imputation procedure.

For many data sets, concerns over confidentiality make it nearly impossible to release public
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use data. As resources available to malicious data users attempting re-identifications continue to
expand, the alterations needed to protect data with traditional disclosure limitation techniques—
such as swapping, adding noise, or microaggregation—may become so extreme that, for many
analyses, the released data are no longer useful. Synthetic data, on the other hand, have the poten-
tial to enable data dissemination while preserving data utility. By synthesizing in two stages, data
producers can improve the risk-utility profile, or reduce the labor costs, of their data releases.

Appendix: Derivation of Approximate Degrees of Freedom
Here we derive the degrees of freedom for the approximate t-distributions for two stage fully and
partially synthetic data.

A.1 Fully synthetic data
The key step is to approximate the distribution of

(

νfTf

ūM/(mr) + (1 + 1/m)B∞ + (1 + 1/(mr))W̄∞

| Dsyn

)

(27)

as a chi-squared distribution with νf degrees of freedom. The νf is determined by matching the
mean and variance of the inverted χ2 distribution to the mean and variance of (27).

Let γ = (B∞ + W̄∞/r + ūM/r)/bM , and let δ = (W̄∞ + ūM)/w̄r. Making the approximation
that the W (i)

∞ = W̄∞ for all i, the (γ−1 | bM ) and (δ−1 | w̄M) have mean square distributions with
degrees of freedom m− 1 and m(r − 1), respectively. Substituting γ and δ into (27), the random
variable is

Tf

ūM/(mr) + (1 + 1/m)(γbM − δw̄M/r) + (1 + 1/(mr))(δw̄M − ūM)
. (28)

We need to approximate the expectation and variance of (28) and match them to a mean square
random variable with νf degrees of freedom. We write the expectation as

E

(

E

(

Tf

ūM/(mr) + (1 + 1/m)(γbM − δw̄M/r) + (1 + 1/(mr))(δw̄M − ūM)
| δ

))

, (29)

where the Dsyn is suppressed from both expectations for brevity. We approximate the expecta-
tions using first order Taylor series expansions in γ−1 and δ−1 around their expectations, which
equal one. The approximation boils down to substituting ones for γ and δ. After substitution, the
denominator in (28) approximately equals Tf , and the expectation approximately equals one.

For the variance, we use the conditional variance representation

V ar

(

E

(

Tf

ūM/(mr) + (1 + 1/m)(γbM − δw̄M/r) + (1 + 1/(mr))(δw̄M − ūM)
| δ

))

+E

(

V ar

(

Tf

ūM/(mr) + (1 + 1/m)(γbM − δw̄M/r) + (1 + 1/(mr))(δw̄M − ūM)
| δ

))

. (30)
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For the interior expectation and variance, we use first order Taylor series expansions in γ−1 around
its expectation. The first term in (30) approximately equals

V ar

(

Tf

ūM/(mr) + (1 + 1/m)(bM − δw̄M/r) + (1 + 1/(mr))(δw̄M − ūM)

)

. (31)

Since V ar(γ−1 | Dsyn, δ) = 2/(m− 1), the second term in (30) approximately equals

E

(

(2/(m− 1))T 2
f ((1 + 1/m)bM)2

(ūM/(mr) + (1 + 1/m)(bM − δw̄M/r) + (1 + 1/(mr))(δw̄M − ūM))4

)

(32)

We next approximate the the variance in (31) and the expectation in (32) using first order
Taylor series expansions in δ−1 around its expectation. Since V ar(δ−1 | Dsyn) = 2/(m(r − 1)),
the variance in (31) approximately equals

2/(m(r − 1))T 2
f ((1 − 1/r)w̄M)2

T 4
f

. (33)

The expectation in (32) approximately equals

(2/(m− 1))T 2
f ((1 + 1/m)bM)2

T 4
f

. (34)

The variance in (30) is approximately the sum of (33) and (34). Since a mean square random
variable has variance equal to 2 divided by its degrees of freedom, we conclude that the

νf =

(

((1 + 1/m)bM )2

(m− 1)T 2
f

+
((1 − 1/r)w̄M)2

(m(r − 1))T 2
f

)

−1

. (35)

A.2 Partially synthetic data
We approximate the distribution of

(

νpTp

ūM + b∞/m + w̄∞/(mr)
| Dsyn

)

(36)

as a chi-squared distribution with νp degrees of freedom. The νp is determined by matching the
mean and variance of the inverted χ2 distribution to the mean and variance of (36).

Let φ = (b∞+w̄∞/r)/bM , and let ψ = w̄∞/w̄M . Making the approximation that thew(i)
∞ = w̄∞

for all i, the (φ−1 | Dsyn, w̄∞) and (ψ−1 | Dsyn) have mean square distributions with degrees of
freedom m− 1 and m(r − 1), respectively. We write the random variable in (36) as

Tp

ūM + φbM/m
. (37)

To match moments, we need to approximate the expectation and variance of (37) and match them
to a mean square random variable with νp degrees of freedom.
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We write the expectation of (37) as

E

(

E

(

Tp

ūM + φbM/m
| Dsyn, w̄∞

)

| Dsyn

)

. (38)

We approximate these expectations using first order Taylor series expansions in ψ−1 and φ−1

around their expectations, which equal one. The approximation boils down to substituting one
for φ, as the ψ never enters the computations except in the conditioning arguments for φ. After
substitution, the denominator in (36) approximately equals Tp, and the expectation approximately
equals one.

For the variance, we use the conditional variance representation

E

(

V ar

(

Tp

ūM + φbM/m
| dM , w̄∞

)

| Dsyn

)

+ V ar

(

E

(

Tp

ūM + φbM/m
| dM , w̄∞

)

| dM

)

.(39)

For the interior expectation and variance, we use first order Taylor series expansions in φ−1 and
ψ−1 around their expectations. The interior expectation equals approximately one, so that the
variance in the second term equals zero. Since V ar(φ−1 | Dsyn, w̄∞) = 2/(m − 1), the interior
variance in (39) approximately equals

E

(

2T 2
p (bM/m)2

(m− 1)(ūM + bM/m)4
| Dsyn

)

=
2(bM/m)2

(m− 1)T 2
p

. (40)

Since a mean square random variable has variance equal to 2 divided by its degrees of freedom,
we conclude that

νp = (m− 1)(Tp/(bM/m))2 = (m− 1)(1 +mūM/bM)2. (41)
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