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Abstract

In this paper, stochastic production frontier models are estimated with IAB estab-
lishment data from waves 2002 and 2003 to find important determinants of pro-
ductivity and inefficiency. The data suffer from nonresponse in the most important
variables (output, capital and labor) leading to the loss of 25 % of the observations
and possibly imprecise estimates and invalid test statistics. Therefore, the missing
values are multiply imputed. Analyzes of the estimation results show that, par-
ticularly in the inefficiency submodel, working with multiply imputed data reveals
some interesting and plausible results which are not available when ignoring missing
observations.
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1 Introduction

In this paper, stochastic production frontier models are estimated with German estab-

lishment data to find important determinants of productivity and inefficiency. We are

confronted with missing values in our data set, a typical situation in empirical research.

A closer look to the data reveals 4 % to 15 % of missing values particularly in the most

important variables: output, capital and labor. Ignoring this would reduce the complete

data records available for any multivariate analysis considerably. Whereas information

from 18447 observations from the panel waves of 2002 and 2003 is collected in principle,

only 13969 observations of them can be used when inference is based only on the com-

plete cases. Ignoring the missing values would certainly lead to lower precision of the

estimates. And the question arises whether the remaining data are still representative for

the population of interest. If not, the resulting test statistics are no longer valid and the

resulting estimates may be biased.

Biases can be expected to occur particularly in the establishment’s inefficiency esti-

mates of the stochastic production frontier. Because frontier estimates depend on the

extreme efficient establishments in the sample and because the inefficiency estimates are

derived from the estimation residuals, the latter are extremely sensitive to any kind of

misspecification in the model – see e.g. Jensen (2005). That is why it is the aim of this

paper to demonstrate in an empirical application the dangers of ignoring missing data

or the gains of properly imputing them when estimating a stochastic production frontier

with establishment data.

The article is structured as follows. In the next section, the data and the response

behavior in the panel are described. In section 3, the stochastic production frontier model

and the selection steps to the analysts’s model are presented. In the following section,

a short introduction to multiple imputation is provided. We describe the imputation

process as well as the preparations and transformations of the variables to be used in the

imputer’s model. In the fifth section, the estimation results using the imputed data are

given and compared with the results based only on the complete data. Finally, section

six summarizes the paper.

2 Data and nonresponse

2.1 Data and response behavior

Our data are taken from two waves (2002 and 2003) of the Establishment Panel of the In-

stitute for Employment Research of the Federal Labor Service (Institut für Arbeitsmarkt-

und Berufsforschung der Bundesagentur für Arbeit, IAB). The basis for the panel is the

employment statistics register of the Federal Employment Service, conducted within the

1



framework of the 1973 revisions to the social insurance system. Each year, all employ-

ers are required, under sanction, to report levels of and changes in the number of their

employees who are subject to the compulsory social security scheme. The register covers

all dependent employment in the private and public sector and accounts for almost 85%

of total employment in Germany. The survey unit of the register is the establishment or

local production unit, rather than the legal and commercial entity of the company.

The IAB Establishment Panel draws a stratified random sample of units from the

register, the selection probabilities depend on the number of employees in the respective

stratum. The strata comprise some 20 industries and 10 establishment size intervals

covering all sectors and employment levels. The overall and size-specific response rates

including firms that are interviewed for the first time exceed 60 percent, and, for repeatedly

interviewed establishments, more than 80 percent.

The panel is designed to meet the needs of the Federal Labor Service. Basically, it

focusses on employment-related matters. Much of the information in the panel concerns

worker characteristics and qualifications as well as levels of and changes in establishment

employment. There is also information on the training of employees and their working

time. Additionally, information on certain establishment policies, business developments,

and investment is collected on an annual basis. Other information is collected biennially

or triennially. Each year the panel also addresses a specific topic.

We exclude all establishments from the sample that do not use turnover as an output

measure. This affects non-profit organisations, public offices, banks and insurances. Thus,

an unbalanced sample of 13969 observations remains without any item-nonresponse on

the variables used in this study. Multiple imputation provides 18447 data records for 2002

and 2003 from 9462 establishments.

Unfortunately, we do not have exact information about the reasons for unit-

nonresponse and drop-out in the data. It is commonly assumed that next to the general

attitude to take part in a survey there are two main reasons for nonresponse. First, there

are questions that are too difficult to understand or the information wanted is not easily

available and, second, there are questions that concern sensitive information. In both

cases, the interviewee is not willing to participate in the panel. A study for earlier waves

of the panel comes to the result that only a few items influence the willingness of firms

to participate significantly (see Hartmann and Kohaut, 2000).

Mainly, item-nonresponse in the data is found only in few variables, particularly those

used to construct output, labor and capital. Output is measured as value added, capital

by the replacement investment and labor by earnings (see subsection 3.2 and the data

appendix for the correct definitions). Table 1 gives the variables in the questionnaire

with the highest item-nonresponse rates. All the other variables used in our study are

distinctly below the rates shown there.
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Table 1: Variables with the highest nonresponse (in %)

Variable 2002 2003

Turnover 13.69 15.05

Input of materials, goods and services 11.99 12.67

Total gross monthly wages in June 11.07 12.78

Investment to enlarge capital 8.38 6.92

Investment 4.19 4.51

2.2 Nonresponse and imputation

First formalized by Rubin (1976), in modern statistical literature (see Little and Rubin

1987, 2002, p. 12) the missing data mechanisms are commonly distinguished according

to the probability of response yielding the following three cases:

• The missing data are said to be missing completely at random (MCAR), if the

nonresponse process is independent of both unobserved and observed data.

• If, conditional on the observed data, the nonresponse process is independent only

of the unobserved data, then the data are missing at random (MAR). This is the

case, e.g., if the probability of answering the turnover question varies according to

the size of the company, and the size is observed.

• Finally, data are termed not missing at random (NMAR), if the nonresponse process

depends on the values of the variables that are actually not observed. This might

be the case for turnover reporting, where companies with higher turnover tend to

be less likely to report their turnover.

In the context of likelihood-based inference and when the parameters describing the

measurement process are functionally independent of the parameter describing the non-

response process, MCAR and MAR are said to be ignorable; otherwise we call it non-

ignorable missingness which is the hardest case to deal with analytically because the

missingness mechanism has to be modeled itself.

As mentioned above, the highest amount of missing values occurs in the most impor-

tant variables for production function estimation: output, capital and labor. A further

analysis of the amount of data missing per variable shows that item-nonresponse is higher

the larger the companies are. So, the establishment size in terms of the number of employ-

ees seems to be a good predictor of missingness. Therefore, we assume that the missing

values of the variables used in the productivity model are missing at random (MAR). As

it is often the case, the missing values are spread around in the data set. If we estimate

our model by any econometric software, we loose 25 % of the observations which still

contain hard-earned information.
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Moreover, basing inference only on the complete cases in our application implicitly

assumes that the data are missing completely at random (MCAR) which obviously is not

the case. To ensure the MAR-assumption and allow to estimate a sophisticated economet-

ric model with missing data, we decided to use a multiple imputation procedure. Using a

single imputation technique such as mean imputation, hot deck, or regression imputation,

in general results in confidence intervals and p-values that ignore the uncertainty due to

the missing data, because the imputed data were treated as if they were fixed known

values. Thus, basing standard complete data inference on singly imputed data will typi-

cally lead to standard error estimates that are too small, p-values that are too significant,

and confidence intervals that undercover – see, e.g., Rässler et al. (2003). To correct for

these effects using singly imputed data, special variance estimation techniques have to be

applied. For a very recent discussion of the merits and demerits of single and multiple

imputation see Groves et al. (2002).

Notice that the ignorability assumption can never be contradicted by the observed

data. However, Schafer (2001) provides evidence that even the erroneous assumption of

MAR might have only minor impact on estimates and standard errors using a proper

multiple imputation strategy. Only when NMAR is a serious concern, it is obviously

necessary to jointly model the data and the missingness, although such models are based

on other untestable assumptions. Therefore, a multiple imputation procedure seems to

be the best alternative at hand in our situation to account for missingness, to exploit all

valuable information, and to get statistically valid subsequent analyses based on standard

complete data inference.

3 Analyst’s model

3.1 Stochastic production frontiers

This subsection summarizes the theory on stochastic production frontiers necessary in the

following.

In microeconomic theory, economic production functions provide maximum possible

output for given inputs of, say, n firms in the sample. In reality, inefficient input use may

lead to lower outputs for many firms. That is why frontier functions (lying on top of the

data cloud) have been developed for estimating potential output and inefficiency.

After the seminal work of Aigner and Chu (1968), Aigner et al. (1977) and Meeusen

and van den Broeck (1977) introduced the stochastic production frontier

Yi = exp(β0) ·
k∏

j=1

X
βj

ij · exp(vi) · TEi, i = 1, . . . , n, (1)
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or in logs

yi = β0 +
k∑

j=1

βjxij + ei, ei = vi − ui, ui ≥ 0. (2)

Here, yi is the output (in logs), xij are k inputs (all in logs) of firm no. i, and βj are

unknown parameters. Then,

ŷi = β̂0 +
k∑

j=1

β̂jxij (3)

is estimated maximum possible output (in logs) for given inputs. The log output difference

ui = ŷi − yi ≥ 0 (4)

or better the output ratio

0 ≤ TEi = exp(−ui) =
Yi

Ŷi

≤ 1 (5)

is interpreted as technical inefficiency of firm no. i. Finally, the composed error term

ei consists of the one-sided inefficiency term ui and the symmetric part vi representing

statistical noise. xij, vi and ui are assumed to be independent with the distributional

assumptions

vi ∼ N(0, σ2
v) and ui ∼ trunc0N(µ, σ2

u) (6)

where trunc0N(·, ·) stands for a normal distribution truncated at u = 0 (see Stevenson,

1980).

The log-likelihood function is l(β, σ, λ, µ) =

−n
[
ln(σ) + const + ln

(
Φ

(−µ

σλ

))]
−

n∑

i=1

[
1

2

(
ei

σ

)2

− ln

(
Φ

(−µ

σλ
− −eiλ

σ

))]
(7)

with

λ =
σu

σv

and σ2 = σ2
v + σ2

u (8)

and the standard normal distribution function Φ(·). Iterative maximization leads to

consistent and asymptotically efficient maximum likelihood (ML) estimators β̂j, σ̂, λ̂ and

µ̂.

How can the inefficiency terms be estimated? Since, in a stochastic frontier model,

the estimation residuals only estimate the composed error e and not u, the inefficiencies

must be estimated indirectly with the help of the minimum mean-squared error predictor

E[ui|ei] =
σλ

1 + λ2


 φ

(
eiλ
σ

)

Φ
(
− eiλ

σ

) − eiλ

σ


 (9)

with the standard normal density function φ(·).
Independence of xij and ui may be a hard assumption. That is why Reifschneider and

Stevenson (1991) allow the inefficiency terms ui to depend on some explanatory variables
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zij (interpreted as sources of inefficiency) which may be partly identical with variables

xij:

ui = δ0 +
l∑

j=1

δjzij + wi = di + wi, i = 1, . . . , n (10)

δj are unknown parameters. The distributional assumptions are

vi ∼ N(0, σ2
v), ui ∼ trunc0N(di, σ

2
u) and wi ∼ trunc−di

N(0, σ2
w) (11)

The ML estimators β̂j, δ̂j, σ̂ and λ̂ are derived simultaneously using iterative ML tech-

niques. The inefficiency terms ui have to be estimated indirectly again.

See the given references for the likelihood function of the full model etc. and see

the surveys in Coelli et al. (1998), Greene (1997) or Jensen (2001a) for more details on

frontiers.

3.2 Analyst’s model selection

This subsection documents the model selection steps in the derivation of the specification

of the estimated model.

The first decision for the analyst is on the functional form for the relation between

output, capital and labor. In order to avoid the well-known hard restrictions of sim-

pler functions like Cobb-Douglas, we have chosen the rather general translog production

function.

The second decision was on the measurement of output, capital and labor. Output is

measured by the value added (see the appendix on variable construction for exact defini-

tions). We excluded all establishments from the sample that do not use turnover as output

measure. This affects non-profit organisations, public offices, banks and insurances. In the

imputed data-sets, 3 distinct outliers in the output variable had to be eliminated because

– particularly with a frontier function – they would significantly bias the estimates.

A reasonable measure for labor input should take account of skill and productivity dif-

ferences between employees, among others. For labor, the data set provides two possible

approximations: full-time equivalents (total number of employees minus 0.5 times total

number of part-time employees) or earnings. The first choice would implicitly assume

e.g. that all employees are equally skilled and productive whereas the second choice im-

plicitly assumes that earnings are a good proxy for skills and productivity, among others.

We decided for the latter because that assumption seems to be more reasonable.

The capital variable is notorious for the difficulties any approximation to the latent

value of the capital stock causes in the estimation. With time series data, the capital

variable approximated by the perpetual inventory method often shows low variation and

non-stationarity. In this paper, with cross-section data covering two years, we decided to

proxy capital by the replacement investment in the current year. Of course, this choice
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implicitly assumes that capital is replaced uniformly and sufficiently, among others. An

alternative would be to approximate capital by the average replacement investment of

several years. But since firms are born and die, this approximation would lead to even

more missing values or firms.

In subsection 2.1, we have shown that replacement investment is one the variables

suffering from many missing values. This problem will be soothed by multiple imputation.

But another problem is that a large part (7888 of 18447) of the values on investment in

the sample are zero. There is some evidence that many of these firms are simply not able

or not willing to provide exact non-zero investment numbers. That is why one important

contribution of our paper is the suggestion to multiply impute these zeroes as well. Notice

that the imputations are all done in one step. We do not perform a two-step imputation

and, therefore, we can still use the usual pooling formulae to get the multiple imputation

estimates. Section 5 will show the consequences of this additional imputation of the

capital variable.

After these fundamental decisions, the covariates of labor and capital in the production

function and the inefficiency determinants in submodel (10) had to be found. It is well-

known that forward and backward variable selection procedures can lead to very different

results when the regressors are correlated. That is why a very detailed data analysis

including a factor analysis to examine the correlation structure of the regressors was

conducted. Then, in a large-scale model selection procedure combining several forward

and backward runs (using both the imputed data and only the observed data), the final

sets of variables for the production function and the submodel were fixed. Every variable

had several opportunities to enter the production function and the submodel. A variable

is included in all regressions if it was significant in at least one of the 11 regressions (5

+ 5 auxiliary regressions with imputed data and one with only the observed data). The

appendix on variable construction shows the exact definitions of all variables and the

tables show the use of the variables.

4 Imputer’s model: data augmentation

4.1 Introduction to multiple imputation

Multiple imputation (MI), introduced by Rubin (1978) and discussed in detail in Rubin

(1987), is a Monte Carlo technique replacing missing values by m > 1 simulated versions,

generated according to a probability distribution or, more generally, any density func-

tion indicating how likely imputed values are given the observed data. MI therefore is

an approach that retains the advantages of imputation while allowing the data analyst

to make valid assessments of uncertainty. The concept of multiple imputation reflects

uncertainty in the imputation of the missing values through wider confidence intervals
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and larger p-values than under single imputation. Typically m is small, with m = 3 or

m = 5. Each of the imputed and thus completed data sets is first analyzed by standard

methods. Then, the results are combined or pooled to produce estimates and confidence

intervals that reflect the missing data uncertainty.

The theoretical motivation for multiple imputation is Bayesian. Let Yobs denote the

observed components of any uni- or multivariate variable Y , and Ymis its missing com-

ponents. Basically, MI requires independent random draws from the posterior predictive

distribution

f(ymis|yobs) =
∫

f(ymis, ψ|yobs) dψ =
∫

f(ymis|yobs, ψ) f(ψ|yobs) dψ (12)

of the missing data Ymis given the observed data Yobs with parameter vector ψ. Since

f(ymis|yobs) itself often is difficult to derive, we may alternatively perform

• random draws of the parameters according to their observed-data posterior distrib-

ution f(ψ|yobs) as well as

• random draws of the missing data according to their conditional predictive distrib-

ution f(ymis|yobs, ψ) given the drawn parameter values.

For many models the conditional predictive distribution f(ymis|yobs, ψ) is rather

straightforward due to the data model used. On the contrary, the corresponding observed-

data posterior

f(ψ|yobs) = L(ψ; yobs)
f(ψ)

f(yobs)
(13)

(with the likelihood function L(ψ; yobs) = f(yobs|ψ)) usually is difficult to derive, espe-

cially when the data have a multivariate structure and different, non-monotone missing

data patterns. The observed-data posteriors often are not standard distributions from

which random numbers could easily be generated. Therefore, simpler methods have been

developed to enable multiple imputation on the grounds of Markov chain Monte Carlo

(MCMC) techniques. They are extensively discussed by Schafer (1997). In MCMC, the

desired distributions f(ψ|yobs) and f(ymis|yobs) are achieved as stationary distributions of

Markov chains which are based on the complete-data distributions which are more easily

computed. Creating m independent draws from such chains can be used as imputations

of Ymis from their posterior predictive distribution f(ymis|yobs).

Based on these m imputed data sets we calculate m complete data statistics θ̂(r) and

their variance estimates V̂(θ̂(r)), r = 1, . . . , m. The complete-case estimates are combined

according to Rubin’s rule such that the MI point estimate θ̂MI for parameter θ is the

average

θ̂MI =
1

m

m∑

r=1

θ̂(r) (14)
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Its estimated total variance T is calculated according to the analysis of variance principle:

‘between-imputation variance’: B =
1

m− 1

m∑

r=1

(
θ̂(r) − θ̂MI

)2

‘within-imputation variance’: W =
1

m

m∑

r=1

V̂
(
θ̂(r)

)
(15)

‘total variance’: T = W +
(
1 +

1

m

)
B

For large sample sizes, tests and two-sided interval estimates can be based on the Student’s

t-distribution

θ̂MI − θ√
T

·∼ t(v) with v = (m− 1)

(
1 +

W

(1 + m−1)B

)2

(16)

degrees of freedom. For a comprehensive overview of MI see Schafer (1999a)

Multiple imputation is in general applicable when the complete-data estimates are as-

ymptotically normal or t distributed; e.g., see Rubin and Schenker (1986), Rubin (1987),

Barnard and Rubin (1999), or Little and Rubin (2002). Notice that the usual maximum-

likelihood estimates and their asymptotic variances derived from the inverted Fisher in-

formation matrix typically satisfy these assumptions. In this paper we use ML estimation

for the analyst’s model.

4.2 Data augmentation using the normal/Wishart model

For the creation of the multiple imputations we use the stand alone software NORM

provided for free by Schafer (1999b).

We assume a k-dimensional normal distribution for all the k variables in the imputer’s

model. Moreover we assume to have n independent observations from this data model;

i.e., for every observable variable Yi of each unit i holds that Yi ∼ N(µ, Σ), i = 1, . . . , n.

As prior distribution f(µ, Σ) for the location and scale parameters, the common un-

informative prior distribution

f(µ, Σ) ≈ f(µ) f(Σ) ≈ c |Σ|−(k+1)/2 ∝ |Σ|−(k+1)/2 (17)

is chosen; i.e., µ and Σ are assumed to be approximately independent – for details see

Schafer (1997). As long as no identification problems occur, the assumption of a nonin-

formative prior distribution seems to be the most ‘objective’ choice.

Under this prior distribution (17), the complete-data posterior distribution f(µ, Σ|y)

of the parameters given the complete data is a normal distribution for µ given Σ and the

data and an inverted-Wishart distribution for Σ given the data

Σ|y ∼ W−1(n− 1, (nS(ȳ))−1) (18)

µ|Σ, y ∼ N(ȳ, Σ/n)
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with the sample covariance matrix

S(ȳ) =
1

n

n∑

i=1

(yi − ȳ)(yi − ȳ)′, ȳ =
1

n

n∑

i=1

yi (19)

and yi = (yi1, . . . , yik)
′. According to the data model, the conditional predictive distri-

bution of the missing data given the observed data and the parameters is a conditional

normal distribution

Ymis|yobs, µ, Σ ∼ N(µmis|obs, Σmis|obs). (20)

The data augmentation algorithm proceeds iteratively in two steps, the so-called im-

putation step and the posterior step.

I-step: For each unit i with missing values, random draws are performed for the missing

data from their conditional predictive distribution f(ymis|yobs, θ), see (20), given the

observed data and an actual draw of the parameters µ(t) and Σ(t); i.e., random values

are generated according to

Y
(t)
mis|yobs, µ

(t), Σ(t) ∼ N
(
µ

(t)
mis|obs, Σ

(t)
mis|obs

)
(21)

P-step: Using the completed data y(t) =
(
yobs, y

(t)
mis

)
, actual values for the mean vector

ȳ(t) and the covariance matrix

S(ȳ(t)) =
1

n

n∑

i=1

(
y

(t)
i − ȳ(t)

) (
y

(t)
i − ȳ(t)

)′
(22)

are calculated. Then, new actual values for the parameters µ(t) and Σ(t) are drawn

according to their complete-data posterior distribution (18)

Σ(t+1)|y(t) ∼ W−1
(
n− 1,

(
nS

(
ȳ(t)

))−1
)

(23)

µ(t+1)|Σ(t+1), y(t) ∼ N
(
ȳ(t), Σ(t+1)/n

)

Such random draws of µ(t) and Σ(t) are considered to be the Bayesianly stochastic

counterpart of maximizing the complete-data likelihood being performed in the M-step of

the EM algorithm. Analogous to the EM, which uses the complete-data likelihood, data

augmentation makes use of the complete-data posterior, which often is more attractive

than the observed-data posterior.

Using some starting values µ(0) and Σ(0), the two steps with (21), (22), and (23)

are repeated many times until independence from the starting values is achieved and

convergence of the Markov chain can be assumed. For t → ∞, the Markov chain{(
µ(t), Σ(t), Y

(t)
mis

)
| t = 0, 1, . . .

}
converges in distribution to f(ymis, θ|yobs). Thus, Y

(t)
mis con-

verges to a draw from the desired posterior predictive distribution f(ymis|yobs) given in

(12). After assessing convergence, e.g. every t + 100, t + 200, . . . value can be used to
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produce m independent multiple imputations. Data augmentation techniques have been

used in practice and provide rather flexible tools for creating multiple imputations from

parametric models. A very detailed description of this data augmentation algorithm is

given by Schafer (1997).

4.3 Data preparation

In the normal/Wishart model, we assume a multivariate normal distribution for the data.

Clearly, our survey data are not normally distributed: some are bounded between zero

and one, others are skewed and some have large proportions of zeros; the latter are called

semi-continuous variables. A way to handle non-normality of the data is by applying

suitable transformations to the variables which is done in our application. Moreover, if

non-normal variables (such as discrete or binary ones) are completely observed, then it

is quite plausible to still use the multivariate normal model because incomplete variables

are modeled as conditional normal given a linear function of the complete variables – see,

e.g., Schafer (1997). The variables and their transformations used in our models are listed

in the appendix.

When a variable is treated as being semi-continuous, then it has a proportion of re-

sponses at the fixed value of, e.g., zero and a continuous distribution among the remaining

observations. Subject to an approach published by Schafer and Olsen (1999), one may

encode each semi-continuous variable Y to a binary indicator W (with W = 1 if Y 6= 0

and W = 0 if Y = 0) and a continuous variable V which is treated as missing whenever

Y = 0. See table 2 for an illustration.

Table 2: Example: preparation of semi-continuous variables

Y

2

0

NA

→

W V

1 2

0 NA

NA NA

Notice that a relationship between W and V would have little meaning and could

not be estimated by the observed data. However, we aim at generating plausible impu-

tations for the original semi-continuous variable Y and, thus, are only interested in the

marginal distribution for W and the conditional distribution for V given W = 1. Data

augmentation algorithms have been shown to behave well in this context with respect to

the parameters of interest – see Schafer and Olsen (1999).

When the values of the variables Y (or the remaining V ) are bounded between zero

and one representing probabilities, a conventional logit-transformation (see Greene, 2003)

works quite well:

g(Y ) =
Y

1− Y
for Y ∈ (0, 1) (24)

11



For positively skewed Y , an ordinary log transformation g(Y ) = ln(Y ) often is a good

choice. Another useful transformation is the Box-Cox transformation

g(Y ) =
Y θ − 1

θ
for θ 6= 0 (25)

However, theoretically, we should transform the data to achieve multivariate normality.

Practically, such transformations are not yet available: the usual transformations are

performed on a univariate scale. Investigations show that such deviations from normality

(for the variables to be imputed) should not harm the imputation process too much – see

Schafer (1997) or Gelman et al. (1998). A growing body of evidence supports the claim

to use a normal model to create multiple imputations even when the observed data are

somewhat non-normal. The focus of the transformations is rather to achieve a range for

continuous variables to be imputed that theoretically have support on the whole real line

than to achieve normality itself. Even for populations that are skewed or heavy-tailed,

the actual coverage of multiple imputation interval estimates is reported to be very close

to the nominal coverage. The multiple imputation framework has been shown to be quite

robust against moderate departures from the data model – see Schafer (1997). Caution

is required if the amount of missing information is very high; i.e., beyond 50% – which is

not the case in this paper. Thus, we may proceed further with these transformed data.

With NORM 2.03, the imputations are created very easily. After a burn-in period of

2000 iterations, every further 200 iterations the imputed data sets are stored. Finally,

m = 5 multiply imputed data sets are used for our analysis. Investigations of time-

series and autocorrelation plots did not suggest any convergence problems. Notice that

in the imputer’s and the analyst’s model the same set of input data, i.e., variables and

observations, is used to avoid problems of misspecification – see Meng (1995) or Schafer

(2001).

5 Results

The stochastic production frontier (2) with inefficiency submodel (10) has been estimated

with the IAB German establishment data described in subsection 2.1. The production

function has translog form in capital and labor and includes further variables given in the

appendix where the variables of the inefficiency submodel are given as well. As described

in subsection 3.2, 11 regressions have been run for 3 approaches:

• Approach MISS: One regression with only the observed data. See tables 3 and 3a

for the results.

• Approach MIC0: m = 5 auxiliary regressions with the full data set where all missing

values have been filled by multiple imputation (see section 4) but where the zeroes
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in the capital variable are maintained. Tables 5 and 5a provide the results of the

auxiliary regressions, tables 3 and 3a provide the pooled results.

• Approach MIMI: m = 5 auxiliary regressions with the full data set where all missing

values and the zeroes in the capital variable have been filled by multiple imputation.

Tables 4 and 4a provide the results of the auxiliary regressions, tables 3 and 3a

provide the pooled results.

Estimation has been performed with LIMDEP 8.0.

5.1 The controversial results

In the following, ‘significance’ means ‘significance on the 5 % level’ if not otherwise stated.

We begin comparing the results on the production frontier in table 3. Here, all 3 ap-

proaches perform rather similar – with one important exception. In the MIC0 approach,

labor is insignificant, even with changing signs in the auxiliary regressions (see table 5).

This certainly is a severe drawback of this approach.

Apart from that, it strikes that higher export activity leads to higher productivity

only when missing observations remain missing whereas, after multiple imputation, the

export parameter becomes insignificantly or weakly significantly negative. See the next

subsection for the relation between export activity and efficiency.

Another interesting difference is the effect of collective agreements on productivity.

With multiply imputed data, there is evidence for reduced productivity whereas, with

missing observations, the parameter is insignificantly positive. The net effect of collective

bargaining on productivity is an open question in labor economics (see e.g. Filer et al.,

1996, p. 513). Studies with German data mostly seem to have not found effects of collective

bargaining on productivity (see e.g. Schnabel, 1991). But this might be caused by too

many missing observations. . .

More striking differences between the approaches are found in the results on the inef-

ficiency submodel in table 3a. With multiply imputed data,

• labor has a weakly significantly positive effect on u, i.e. a weakly significantly nega-

tive effect on efficiency – see (5) – whereas, with missing observations, higher wage

costs significantly increase efficiency. It is interesting to see that, with multiply

imputed data, the univariate relation between efficiency and labor is positive. This

means that the covariates are more influential on this relation in these approaches.

The negative effect of wages on efficiency could be explained by standard argu-

ments from labor economics, namely shirking theory (Lazear, 1981): Larger firms

with many employees have problems with monitoring the work effort of their em-

ployees. The solution are higher relative wages and the threat of being discharged,

a powerful disciplinary threat. But, of course, this might be inefficient.

13



• higher exports significantly raise efficiency whereas the influence is weakly signifi-

cantly negative with missing observations. The parameters of the production frontier

(2) and inefficiency submodel (10) are jointly estimated (see subsection 3.1). Thus,

substitution between effects on productivity and efficiency may occur. Whereas the

MISS approach finds a positive effect of exports on productivity (see the previous

subsection), the MIC0/MIMI approaches see a positive effect on efficiency.

• collective agreements (weakly) significantly coincide with higher efficiency whereas

the influence is insignificantly negative with missing observations.

• firms receiving relatively more wage subsidies are significantly less efficient. Employ-

ees receiving wage subsidies might not work efficiently. This effect is only weakly

significant with missing observations.

• firms supporting relatively more on-the-job-training cases are less efficient. This

can make sense because the returns to the firm costs of on-the-job-training might

not be sufficient. This effect is insignificant with missing observations, where firms

supporting the use of PCs for on-the-job-training cases are significantly less efficient.

• the variance ratio λ in (8) is distinctly higher than with missing observations mean-

ing that noise, i.e. the denominator in (8), constitutes a relatively larger part of

total variance in the latter case.

• mean technical efficiency – see (5) – is distinctly higher (55 %) than with missing

observations (48 %).

• most parameter estimates are drastically higher than with missing observations.

Since we are working with real data and not with simulated data, we don’t know

anything about the true parameter values. Hence, we are not able to say which results

come closer to the truth. Nevertheless, particularly in the inefficiency submodel, working

with multiply imputed data seems to reveal some interesting and plausible results which

are not available with missing observations. And, summarizing the performance of the two

multiple imputation approaches, the MIC0 approach suffers from the serious drawback of

counterintuitively producing an insignificant labor parameter in the production function.

So, we have a small but significant preference for the results obtained with multiple

imputation where the capital zeroes are imputed as well.

5.2 The unanimous results

In this subsection, a larger part of the unanimous and significant results are interpreted.

We start with the results on the production function.
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• Except the capital parameter in the MIC0 approach (see the previous subsection),

the capital and labor parameters show the expected signs and ranges.

• OUTPROGP/OUTPROGN: If turnover is expected to increase (decrease), it seems

to be rather low (high). Thus, an expected increase (decrease) goes in line with

lower (higher) productivity.

• DEVELOP: If the technical condition of a firm is up to date, the productivity is

higher.

• NEWWORK: Firms with relatively many new hires (having little firm-specific hu-

man capital) are less productive.

• SKSEARCH: Firms searching relatively many skilled employees as of now are pro-

ducing on the efficient frontier and would like to expand.

• FLUCT: Stronger production fluctuations lead to lower productivity.

• EAST: Enterprises which are by majority in East German property are less produc-

tive, a well-known result.

• TRAIND/TRAINPC: Firms supporting on-the-job-training (with or without PCs)

are more productive.

• PROP1: Firms offering many jobs for whom experience is important do not seem

to operate on the technological frontier and hence are less productive.

Finally, two stable significant results on the inefficiency submodel are:

• SKILL: Firms with relatively many skilled employees are producing more efficiently.

• PROP4: Firms offering many jobs for whom creativity is important might be ex-

posed to relatively many production risks leading to lower efficiency.

6 Conclusions

In this paper, we have demonstrated in an empirical application the gains of properly

imputing missing data when estimating a stochastic production frontier with establish-

ment data. Frontier estimates and particularly establishment’s inefficiency estimates are

known to react extremely sensitive to any kind of misspecification.

In conventional empirical research concerning econometric issues, often missing data

are simply ignored and analysis is based on the complete cases only. Omitting valuable

information that is already in the data is statistically inefficient and often leads to sub-

stantially biased inferences when the data are not missing completely at random (MCAR),
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which is the case in most typical settings. In general, multiple as well as single imputation

techniques can be used under a less restrictive MAR-assumption. However, with single

imputation, standard complete-case analysis can often not be applied directly, because it

leads to standard errors that are too small, p-values that are too significant, and confi-

dence intervals that undercover. Especially when inference is drawn from a multivariate

and complex model, we regard multiple imputation as the most flexible tool to get valid

inference if the data are exposed to nonresponse.

A further contribution of this paper is the additional imputation of the capital variable

proxied by the replacement investment in the current year. Replacement investment

suffers from many missing values and from the fact that a large part of its values in the

sample are zero. Since there is some evidence that many of these firms are simply not able

or not willing to provide exact non-zero investment values we have suggested to multiply

impute these zeroes as well.

Having worked with real data, we are not able to say which results come closer to

the truth. But, particularly in the inefficiency submodel, working with multiply imputed

data seems to reveal some interesting and plausible results which are not available with

missing observations. And, comparing the performance of the two multiple imputation

approaches, the approach which maintained the zeroes in the capital variable suffers from

counterintuitively producing an insignificant labor parameter in the production function.

Thus, we have a small but distinct preference for the results obtained with multiple

imputation where the capital zeroes are imputed as well.

Missing values are a typical problem in empirical research. We hope that our study

helps raising the probability that proper multiple imputation tools will be more widespread

in standard econometric software as soon as possible.
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Appendix: Data preparation, variable construction

Variables in the questionnaire (to be transformed)

SALE turnover in EUR

INPUT input of materials, goods and services in % of turnover

INVEST investment in EUR

ADDINV investment to enlarge capital in % of investment

EMP total number of employees

NOVERTIM total number of employees with paid overtime in previous year

EXPORT export in EUR

NSKILL total number of highly skilled employees

NONEWHIR dummy: NONEWHIR = 1 if no new hires in first half-year

WOULD dummy: WOULD = 1 if employer wanted to hire new employees

NNEWHIR total number of new hires in first half-year

QUIT total number of quits in first half-year

NTERMIN total number of terminations by employees in first half-year

NSKSEARC total number of skilled employees searched as of now

NSUBSIDL total number of employees supported by wage subsidies in previous year

NSHORT total number of short-time workers in first half-year

NTRAINP total number of employees in on-the-job-training in first half-year

NTRAINC total number of on-the-job-training cases in first half-year
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Variables in the regressions

Y output: SALE * (1 - INPUT/100)
C capital: INVEST * (1 - ADDINV/100), C = 1 if no investment
L labor: total gross monthly wages in June
YEAR dummy: YEAR = 1 if observation in 2003
OVERTIM NOVERTIM/EMP
OUTPROGP dummy: OUTPROGP = 1 if turnover is expected to increase
OUTPROGN dummy: OUTPROGN = 1 if turnover is expected to decrease
EXP EXPORT/SALE
DEVELOP ordinal: Rating of technical condition of enterprise

(0 = completely out-of-date, 4 = up to date)
COLLECT dummy: COLLECT = 1 for collective agreements
SKILL NSKILL/EMP
NOLABSUP dummy: NOLABSUP = NONEWHIR * WOULD
NEWWORK NNEWHIR/EMP
TERMIN NTERMIN/QUIT
SKSEARCH NSKSEARC/EMP
SUBSIDYL NSUBSIDL/EMP
FLUCT dummy: FLUCT = 1 for stronger production fluctuations in previous year
EAST dummy: EAST = 1 if enterprise by majority in East German property
SHORTTIM NSHORT/EMP
TRAIND dummy: TRAIND = 1 if employer has supported on-the-job-training in first half-year
TRAINPER NTRAINP/EMP
TRAINCAS NTRAINC/EMP
TRAINPC dummy: TRAINPC = 1 if employer supports use of PCs for on-the-job-training
TYPE1 dummy: TYPE1 = 1 for independent enterprise without any establishments elsewhere
TYPE2 dummy: TYPE2 = 1 for head office of an enterprise with establishments elsewhere
TYPE3 dummy: TYPE3 = 1 for branch establishment of a larger enterprise
TYPE4 dummy: TYPE4 = 1 for intermediate authority of a larger enterprise
PROP1 dummy: PROP1 = 1 if experience is important for most jobs in the firm
PROP2 dummy: PROP2 = 1 if physical endurance is important for most jobs in the firm
PROP4 dummy: PROP4 = 1 if creativity is important for most jobs in the firm
PROP5 dummy: PROP5 = 1 if discipline is important for most jobs in the firm
PROP6 dummy: PROP6 = 1 if flexibility is important for most jobs in the firm
PROP8 dummy: PROP8 = 1 if superior workmanship is important for most jobs in the firm
PROP9 dummy: PROP9 = 1 if theoretical knowledge is important for most jobs in the firm
PROP11 dummy: PROP11 = 1 if loyalty is important for most jobs in the firm
PROP12 dummy: PROP12 = 1 if willingness to learn is important for most jobs in the firm
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Data transformation for MI procedure

Y Box-Cox

C log, dummy∗

L Box-Cox

OVERTIM logit

EXP log, dummy∗

DEVELOP no transformation

SKILL logit

NEWWORK Box-Cox

TERMIN logit

SKSEARCH Box-Cox

SUBSIDYL Box-Cox

SHORTTIM Box-Cox

TRAINPER Box-Cox

TRAINCAS Box-Cox

1. Variables marked with an asterisk are treated as semi-continuous, i.e., a major part

of the observations are at the minimum or the maximum of values. Therefore, we

defined dummy variables that indicate whether an observation is at the respective

minimum or maximum. The transformation procedure is performed only for the

continuous part of the variable (see subsection 4.3).

2. All variables not mentioned in this list are dummies which remain untransformed

(see subsection 4.3).
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Tables

Table 3: Estimates of stochastic production frontier

Imputed missing values, Imputed missing values, Non-missing values
imputed capital zeroes with capital zeroes

Variable Coefficient t value Coefficient t value Coeff. t value

Const. 7.8103 30.52 9.3327 28.72 8.6089 73.44
ln(C) 0.1541 3.19 0.0253 3.44 0.0227 3.78
ln(L) 0.1144 2.70 0.0125 0.46 0.1721 7.38
(ln(C))2 0.0115 3.25 0.0070 13.37 0.0064 16.54
(ln(L))2 0.0486 17.70 0.0399 27.79 0.0317 25.64
ln(C) · ln(L) -0.0309 -4.08 -0.0088 -11.15 -0.0079 -12.63
YEAR -0.0386 -1.34 -0.0026 -0.19 0.0136 1.21
OVERTIM -0.0453 -1.44 -0.0382 -1.23 0.0292 1.34
OUTPROGP -0.0508 -2.54 -0.0517 -2.69 -0.0565 -3.55
OUTPROGN 0.0678 4.52 0.0701 4.59 0.0852 6.73
EXP -0.0750 -1.34 -0.0999 -1.79 0.0781 5.39
DEVELOP 0.0708 4.02 0.0640 4.65 0.0567 5.13
COLLECT -0.0473 -2.02 -0.0606 -2.36 0.0126 0.64
NEWWORK -0.4025 -6.60 -0.4282 -7.63 -0.5289 -11.64
SKSEARCH 0.2057 2.31 0.1956 2.21 0.1725 3.42
FLUCT -0.0436 -2.11 -0.0471 -2.27 -0.0411 -2.56
TYPE2 0.1652 4.77 0.1646 5.02 0.0783 3.14
TYPE3 0.3810 12.01 0.3922 13.21 0.3203 14.44
TYPE4 0.4094 5.80 0.4197 5.91 0.3707 7.35
EAST -0.1681 -7.00 -0.1695 -7.11 -0.1657 -8.35
TRAIND 0.0662 3.08 0.0551 2.30 0.0682 3.61
TRAINPER -0.0081 -1.79 -0.0117 -2.60 -0.0059 -1.20
TRAINPC 0.0796 3.63 0.0770 3.54 0.0766 4.38
PROP1 -0.0587 -2.69 -0.0614 -2.89 -0.0557 -3.41
PROP2 -0.0396 -2.08 -0.0317 -1.69 -0.0703 -5.40
PROP5 0.0412 1.96 0.0441 2.09 0.0458 3.05
PROP6 0.0362 1.62 0.0373 1.74 0.0238 1.38
PROP8 -0.0651 -2.95 -0.0651 -2.91 -0.0548 -2.83
PROP9 -0.0700 -3.85 -0.0726 -3.98 -0.0529 -3.65
PROP11 0.0470 2.69 0.0381 2.10 0.0511 3.81
PROP12 0.0416 2.29 0.0385 2.12 0.0444 3.29

Industry dummies yes yes yes

18447 observations 18447 observations 13969 observations

Source: own calculations, based on IAB data
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Table 3a: Estimates of inefficiency submodel

Imputed missing values, Imputed missing values, Non-missing values

imputed capital zeroes with capital zeroes

Variable Coefficient t value Coefficient t value Coeff. t value

Const. -32.816 -2.15 -29.564 -2.30 -0.1646 -0.41

ln(L) 0.809 1.61 0.793 1.77 -0.0874 -2.90

EXP -32.826 -2.74 -31.184 -2.99 0.0633 1.71

DEVELOP 1.039 1.30 0.708 1.03 0.1195 1.82

COLLECT -3.100 -1.85 -3.407 -2.14 0.0148 0.12

SKILL -5.615 -2.11 -4.750 -2.28 -0.3442 -2.62

NOLABSUP 4.066 1.53 3.745 1.59 0.0907 0.48

TERMIN -4.482 -1.74 -4.599 -1.83 -0.2006 -1.64

SUBSIDYL 6.064 2.46 5.599 2.71 0.2723 1.84

FLUCT -2.667 -1.61 -2.313 -1.64 -0.1489 -1.55

TYPE1 -7.468 -2.58 -6.533 -2.76 -0.5958 -5.15

EAST -2.135 -1.28 -2.174 -1.40 -0.2946 -2.48

SHORTTIM -4.841 -1.17 -5.279 -1.40 -0.0541 -0.22

TRAIND -1.671 -1.11 -1.698 -1.26 0.1614 1.37

TRAINCAS 0.207 2.72 0.202 3.07 0.0121 1.46

TRAINPC 1.721 1.22 1.797 1.27 0.2222 2.08

PROP1 -1.766 -1.25 -1.945 -1.48 -0.1842 -1.84

PROP4 4.423 2.22 4.042 2.46 0.4545 5.38

PROP6 2.876 1.62 2.422 1.63 0.1528 1.44

PROP8 -4.468 -1.38 -4.003 -1.55 -0.2531 -2.21

Industry dummies yes yes yes

λ 6.428 2.88 6.024 3.21 2.6818 26.78

Technical inefficiency estimates

Variable Mean Mean Mean

ui 0.5924 0.5908 0.7433

18447 observations 18447 observations 13969 observations

Source: own calculations, based on IAB data
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Table 4: Estimates of stochastic production frontier
(5 auxiliary regressions: Imputed missing values, imputed capital zeroes)

Variable Coeff. t val. Coeff. t val. Coeff. t val. Coeff. t val. Coeff. t val.

Const. 7.821 55.1 7.582 54.8 7.714 57.0 7.827 50.4 8.107 56.1
ln(C) 0.136 5.8 0.176 7.7 0.212 9.5 0.118 5.2 0.130 5.7
ln(L) 0.130 6.3 0.138 6.7 0.091 4.4 0.147 7.5 0.067 3.6
(ln(C))2 0.014 8.4 0.014 8.5 0.013 7.8 0.009 6.9 0.008 5.6
(ln(L))2 0.049 33.9 0.050 35.9 0.051 33.9 0.045 39.5 0.048 37.5
ln(C) · ln(L) -0.033 -13.0 -0.037 -14.3 -0.037 -13.3 -0.025 -13.1 -0.023 -10.4
YEAR -0.045 -3.4 -0.032 -2.5 -0.001 -0.1 -0.061 -4.6 -0.053 -4.0
OVERTIM -0.064 -3.1 -0.039 -1.9 -0.062 -3.1 -0.051 -2.5 -0.011 -0.5
OUTPROGP -0.047 -2.6 -0.059 -3.3 -0.054 -3.0 -0.039 -2.2 -0.055 -3.0
OUTPROGN 0.070 4.7 0.063 4.3 0.068 4.6 0.068 4.6 0.070 4.8
EXP -0.096 -1.9 -0.092 -1.8 -0.061 -1.2 -0.079 -1.5 -0.047 -0.9
DEVELOP 0.082 7.2 0.063 5.6 0.053 4.7 0.079 7.1 0.078 7.0
COLLECT -0.057 -2.7 -0.041 -2.0 -0.049 -2.4 -0.056 -2.7 -0.033 -1.6
NEWWORK -0.367 -7.0 -0.391 -7.2 -0.397 -7.4 -0.433 -8.2 -0.424 -7.7
SKSEARCH 0.214 2.8 0.158 1.9 0.177 2.2 0.251 3.4 0.228 2.9
FLUCT -0.042 -2.3 -0.039 -2.2 -0.060 -3.4 -0.041 -2.4 -0.035 -2.0
TYPE2 0.185 6.4 0.178 6.2 0.160 5.5 0.163 5.7 0.140 4.8
TYPE3 0.392 17.1 0.379 16.4 0.408 18.2 0.371 16.1 0.356 15.2
TYPE4 0.403 5.9 0.411 6.0 0.405 6.1 0.441 6.7 0.388 5.9
EAST -0.179 -8.2 -0.161 -7.3 -0.163 -7.5 -0.177 -8.2 -0.160 -7.4
TRAIND 0.060 2.9 0.077 3.8 0.063 3.1 0.063 3.1 0.069 3.5
TRAINPER -0.009 -1.9 -0.007 -1.7 -0.007 -1.9 -0.009 -2.0 -0.009 -1.9
TRAINPC 0.086 4.5 0.071 3.8 0.067 3.6 0.091 4.9 0.084 4.5
PROP1 -0.058 -3.3 -0.057 -3.2 -0.054 -3.1 -0.078 -4.4 -0.046 -2.6
PROP2 -0.047 -3.1 -0.042 -2.8 -0.026 -1.8 -0.031 -2.1 -0.052 -3.5
PROP5 0.049 2.8 0.033 1.9 0.048 2.8 0.026 1.5 0.049 2.9
PROP6 0.036 1.9 0.024 1.3 0.037 2.0 0.054 2.9 0.029 1.6
PROP8 -0.066 -3.1 -0.063 -3.0 -0.075 -3.6 -0.061 -2.9 -0.060 -2.9
PROP9 -0.078 -4.6 -0.064 -3.9 -0.075 -4.6 -0.071 -4.4 -0.061 -3.7
PROP11 0.060 4.0 0.045 3.0 0.045 3.0 0.046 3.1 0.038 2.6
PROP12 0.050 3.2 0.051 3.3 0.029 1.9 0.039 2.6 0.040 2.6

Industry dummies yes yes yes yes yes

Source: own calculations, based on IAB data, 18447 observations
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Table 4a: Estimates of inefficiency submodel
(5 auxiliary regressions: Imputed missing values, imputed capital zeroes)

Variable Coeff. t val. Coeff. t val. Coeff. t val. Coeff. t val. Coeff. t val.

Const. -36.30 -2.4 -29.00 -2.6 -39.77 -2.8 -21.76 -2.9 -37.25 -2.5
ln(L) 0.71 2.2 0.70 2.4 1.26 2.9 0.37 1.8 1.01 2.7
EXP -35.37 -2.5 -33.09 -3.1 -34.53 -3.2 -27.69 -3.5 -33.45 -2.6
DEVELOP 1.35 1.6 0.83 1.3 0.70 0.9 0.93 1.7 1.38 1.6
COLLECT -3.68 -2.2 -2.32 -1.9 -4.00 -2.3 -2.39 -2.4 -3.11 -2.0
SKILL -4.84 -2.0 -5.56 -2.5 -7.32 -2.6 -4.51 -2.8 -5.84 -2.2
NOLABSUP 5.84 2.1 3.43 1.6 3.88 1.5 4.27 2.4 2.91 1.2
TERMIN -5.44 -2.2 -3.46 -2.1 -5.69 -2.4 -2.53 -2.1 -5.29 -2.2
SUBSIDYL 6.67 2.5 5.40 2.8 6.75 2.8 4.96 3.2 6.54 2.5
FLUCT -2.80 -1.9 -1.87 -1.8 -4.02 -2.4 -1.85 -2.1 -2.80 -1.9
TYPE1 -6.93 -2.4 -7.13 -2.9 -8.59 -2.9 -6.43 -3.4 -8.26 -2.6
EAST -3.16 -1.8 -2.24 -1.6 -1.83 -1.1 -1.99 -1.8 -1.46 -1.0
SHORTTIM -5.62 -1.3 -3.62 -1.1 -3.87 -1.0 -6.87 -1.9 -4.23 -1.1
TRAIND -1.85 -1.3 -0.64 -0.6 -1.78 -1.2 -1.41 -1.5 -2.68 -1.9
TRAINCAS 0.21 2.4 0.19 3.3 0.24 3.7 0.18 3.4 0.22 2.5
TRAINPC 2.84 2.0 1.32 1.3 0.99 0.8 1.39 1.6 2.06 1.7
PROP1 -2.14 -1.5 -1.78 -1.6 -1.84 -1.4 -2.41 -2.3 -0.66 -0.6
PROP4 4.29 2.3 4.86 2.7 5.38 2.7 3.12 2.9 4.48 2.3
PROP6 3.30 2.0 1.54 1.5 4.17 2.4 2.94 2.7 2.43 1.7
PROP8 -3.93 -1.3 -4.01 -1.5 -5.59 -1.5 -3.80 -1.8 -5.01 -1.3

Industry dummies yes yes yes yes yes

λ 6.65 2.7 6.07 3.1 6.90 3.1 5.73 3.7 6.80 2.7

Technical inefficiency estimates

Variable Mean Mean Mean Mean Mean

ui 0.59 0.59 0.57 0.63 0.58

Source: own calculations, based on IAB data, 18447 observations
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Table 5: Estimates of stochastic production frontier
(5 auxiliary regressions: Imputed missing values, with capital zeroes)

Variable Coeff. t val. Coeff. t val. Coeff. t val. Coeff. t val. Coeff. t val.

Const. 9.319 94.8 9.271 97.2 9.459 98.1 9.233 95.5 9.382 101.1
ln(C) 0.023 3.5 0.031 4.9 0.022 3.4 0.025 4.0 0.025 4.0
ln(L) 0.019 1.0 0.019 1.1 -0.001 -0.1 0.036 2.0 -0.010 -0.6
(ln(C))2 0.007 14.3 0.007 14.2 0.007 15.1 0.007 14.7 0.007 14.5
(ln(L))2 0.039 37.4 0.040 40.5 0.040 38.6 0.039 38.6 0.041 40.8
ln(C) · ln(L) -0.008 -11.6 -0.009 -13.3 -0.009 -12.3 -0.009 -12.6 -0.009 -12.6
YEAR -0.001 -0.0 0.000 0.0 -0.004 -0.3 -0.007 -0.6 -0.001 -0.1
OVERTIM -0.055 -2.6 -0.037 -1.8 -0.055 -2.7 -0.039 -1.9 -0.004 -0.2
OUTPROGP -0.047 -2.5 -0.058 -3.2 -0.052 -2.8 -0.046 -2.5 -0.057 -3.1
OUTPROGN 0.073 4.9 0.066 4.4 0.072 4.8 0.067 4.6 0.072 4.9
EXP -0.108 -2.1 -0.118 -2.3 -0.081 -1.6 -0.114 -2.2 -0.079 -1.5
DEVELOP 0.074 6.4 0.062 5.4 0.054 4.8 0.065 5.8 0.065 5.8
COLLECT -0.076 -3.6 -0.052 -2.5 -0.062 -3.0 -0.072 -3.5 -0.042 -2.0
NEWWORK -0.409 -7.7 -0.421 -7.7 -0.430 -7.9 -0.440 -8.3 -0.442 -8.0
SKSEARCH 0.217 2.8 0.124 1.6 0.206 2.7 0.219 2.9 0.213 2.8
FLUCT -0.043 -2.4 -0.043 -2.4 -0.064 -3.6 -0.045 -2.6 -0.040 -2.3
TYPE2 0.177 6.2 0.176 6.1 0.164 5.6 0.164 5.7 0.142 4.9
TYPE3 0.401 17.2 0.387 16.5 0.414 18.2 0.390 16.8 0.369 15.7
TYPE4 0.413 5.9 0.407 5.8 0.421 6.2 0.450 6.8 0.407 6.1
EAST -0.181 -8.1 -0.165 -7.4 -0.172 -7.9 -0.171 -7.8 -0.158 -7.3
TRAIND 0.048 2.3 0.068 3.3 0.066 3.2 0.042 2.1 0.052 2.6
TRAINPER -0.012 -2.7 -0.011 -2.7 -0.011 -2.7 -0.013 -2.8 -0.012 -2.5
TRAINPC 0.081 4.2 0.066 3.5 0.067 3.6 0.088 4.7 0.082 4.4
PROP1 -0.064 -3.6 -0.061 -3.4 -0.055 -3.1 -0.078 -4.4 -0.049 -2.8
PROP2 -0.038 -2.5 -0.035 -2.3 -0.019 -1.3 -0.023 -1.6 -0.044 -2.9
PROP5 0.047 2.7 0.037 2.2 0.055 3.1 0.029 1.7 0.052 3.0
PROP6 0.043 2.3 0.028 1.5 0.044 2.3 0.046 2.5 0.027 1.4
PROP8 -0.064 -3.0 -0.063 -3.0 -0.076 -3.6 -0.061 -2.8 -0.061 -2.9
PROP9 -0.080 -4.7 -0.069 -4.2 -0.078 -4.6 -0.074 -4.5 -0.063 -3.8
PROP11 0.054 3.5 0.032 2.1 0.034 2.2 0.037 2.4 0.034 2.3
PROP12 0.046 3.0 0.049 3.1 0.028 1.8 0.037 2.4 0.033 2.2

Industry dummies yes yes yes yes yes

Source: own calculations, based on IAB data, 18447 observations
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Table 5a: Estimates of inefficiency submodel
(5 auxiliary regressions: Imputed missing values, with capital zeroes)

Variable Coeff. t val. Coeff. t val. Coeff. t val. Coeff. t val. Coeff. t val.

Const. -33.82 -2.6 -26.89 -2.9 -32.62 -3.4 -19.10 -3.2 -35.38 -2.7
ln(L) 0.67 2.3 0.74 2.7 1.14 3.5 0.37 2.0 1.04 2.9
EXP -33.64 -2.7 -32.49 -3.6 -30.52 -4.2 -25.52 -3.9 -33.76 -2.9
DEVELOP 0.96 1.3 0.60 1.1 0.32 0.5 0.69 1.5 0.97 1.3
COLLECT -4.16 -2.5 -2.76 -2.3 -4.08 -2.9 -2.58 -2.8 -3.45 -2.3
SKILL -4.42 -2.1 -4.89 -2.7 -5.75 -3.0 -3.65 -2.9 -5.04 -2.3
NOLABSUP 5.47 2.2 3.25 1.7 3.12 1.5 3.72 2.5 3.16 1.4
TERMIN -5.92 -2.4 -3.77 -2.4 -5.36 -2.8 -2.40 -2.3 -5.55 -2.5
SUBSIDYL 6.38 2.7 5.07 3.1 5.94 3.4 4.49 3.7 6.12 2.8
FLUCT -2.26 -1.8 -1.68 -1.7 -3.50 -2.8 -1.62 -2.1 -2.51 -1.9
TYPE1 -6.14 -2.5 -6.44 -3.2 -7.25 -3.5 -5.36 -3.7 -7.48 -2.8
EAST -3.15 -1.8 -2.38 -1.8 -1.75 -1.3 -2.06 -2.0 -1.53 -1.1
SHORTTIM -5.95 -1.4 -4.12 -1.2 -4.89 -1.3 -6.18 -2.0 -5.25 -1.4
TRAIND -1.89 -1.4 -0.83 -0.8 -1.89 -1.5 -1.34 -1.6 -2.55 -2.0
TRAINCAS 0.22 2.5 0.18 4.1 0.22 4.9 0.17 4.0 0.22 2.9
TRAINPC 2.97 2.1 1.40 1.5 0.97 1.0 1.30 1.7 2.33 1.9
PROP1 -2.57 -1.8 -1.97 -1.8 -1.87 -1.7 -2.34 -2.5 -0.98 -0.9
PROP4 4.16 2.4 4.48 3.0 4.34 3.1 2.90 3.2 4.33 2.5
PROP6 3.09 2.1 1.37 1.4 3.34 2.6 2.40 2.7 1.91 1.5
PROP8 -3.74 -1.4 -3.77 -1.7 -4.48 -1.8 -3.33 -2.0 -4.70 -1.5

Industry dummies yes yes yes yes yes

λ 6.40 2.9 5.75 3.5 6.21 4.0 5.27 4.3 6.49 3.0

Technical inefficiency estimates

Variable Mean Mean Mean Mean Mean

ui 0.59 0.59 0.58 0.62 0.57

Source: own calculations, based on IAB data, 18447 observations
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